Title: Modified stem cells algorithm-based neural network applied to bottom hole circulating pressure in underbalanced drilling

Authors: Reza Taherdangkoo; Mohammad Taherdangkoo

Addresses: Department of Petroleum Engineering, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran ' Department of Artificial Intelligence, Tehran Business School, 2532 Valiasr Street, Tehran, Iran

Abstract: In this paper, we address the problem of inaccuracy in evaluating bottom hole circulating pressure (BHCP) in the petroleum industry by proposing a new predicting scheme. This scheme utilises a modified version of the stem cells algorithm (MSCA), recently introduced as a powerful meta-heuristic optimisation method, along with the back propagation (BP) training strategy to build a three-layer artificial neural network (ANN) as a predictive scheme. This new method is able to predict the complex relationship between inputs and outputs of a highly nonlinear system such as BHCP more accurately. The results by applying the proposed method compared with those by applying previous predicting methods used for BHCP demonstrate the superiority of the proposed method in terms of accuracy and time consumption.

Keywords: modified stem cells algorithm; artificial neural networks; ANNs; bottom hole circulating pressure; BHCP; underbalanced drilling; petroleum engineering; oil industry; metaheuristics; optimisation.

DOI: 10.1504/IJPE.2015.071061

International Journal of Petroleum Engineering, 2015 Vol.1 No.3, pp.178 - 188

Available online: 10 Aug 2015

Full-text access for editors Access for subscribers Purchase this article Comment on this article