Title: Anomaly digging approach based on massive RFID data in transportation logistics

Authors: Xiaohua Cao; Xiejun Zhang

Addresses: School of Logisitics Engineering, Wuhan University of Technology, Wuhan City, 430063, China ' School of Logisitics Engineering, Wuhan University of Technology, Wuhan City, 430063, China

Abstract: In modern transportation logistics, anomaly significantly lowers the efficiency of production and the quality of service. Massive RFID data is produced to record the states of materials in transportation logistics. The data is of multi-attribute, randomness and various dimensions so that it is difficult to find out anomalies from these data. A deviation-based clustering approach is proposed to dig anomalies. Firstly, the features of RFID data are discussed from multi-attribute perspectives including time, location, data, sequence and path. Next, against the randomness and various dimensions of state data, a clustering approach is presented to unify the dimensions of state data and dig anomalies from random state data. The results show that the proposed approach can efficiently find more than 91.2% of anomalies among transportation logistics.

Keywords: anomaly digging; massive RFID data; radio frequency identification; deviation models; clustering; transport logistics; big data.

DOI: 10.1504/IJBDI.2014.066324

International Journal of Big Data Intelligence, 2014 Vol.1 No.3, pp.166 - 171

Available online: 16 Dec 2014 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article