Title: Genetic-fuzzy logic ramp metering control for ramp metering of motorway

Authors: X.F. Yu; F. Alam; W.L. Xu

Addresses: School of Engineering and Advanced Technology, Massey University, Auckland, New Zealand ' School of Engineering and Advanced Technology, Massey University, Auckland, New Zealand ' The Department of Mechanical Engineering, University of Auckland, Auckland, New Zealand

Abstract: This paper proposes a local responsive ramp metering algorithm based on genetic fuzzy logic control (GFLC). In this algorithm, the traffic conditions for an isolated on-ramp are responded by a knowledge-based system containing a set of membership functions and a set of fuzzy rules. In order to stabilise the traffic density at the critical density where traffic volumes reach the maximum throughput, genetic algorithm is employed to tune the parameterised membership functions. The performance of GFLC is measured by total travel time (TTT) in a simulation scenario constructed by a stochastic and microscopic simulator, Aimsun. The proposed algorithm is also compared to FLC ramp metering and no-ramp-control case to show the improvement in terms of the percentage changes of TTT. The simulation results have shown that the GFLC ramp metering provides significant improvement of TTT and better ability to maintain system flow density than the FLC ramp metering.

Keywords: ramp metering control; genetic fuzzy logic; Aimsun; total travel time; fuzzy control; motorways; genetic algorithms; knowledge-based systems; KBS; traffic density; traffic volumes; maximum throughput; simulation; traffic flow; traffic congestion.

DOI: 10.1504/IJCAT.2014.063906

International Journal of Computer Applications in Technology, 2014 Vol.50 No.1/2, pp.30 - 44

Received: 08 May 2021
Accepted: 12 May 2021

Published online: 25 Jul 2014 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article