Title: Optimal score level fusion combining multi-normalisation and separability measures

Authors: S.M. Anzar; P.S. Sathidevi

Addresses: Department of Electronics and Communication Engineering, National Institute of Technology Calicut, 673601, India ' Department of Electronics and Communication Engineering, National Institute of Technology Calicut, 673601, India

Abstract: This paper demonstrates the utility of multi-normalisation and separability measures for the optimal fusion of fingerprint and speaker biometrics. The decision scores of the individual matchers are transformed using various normalisation techniques and the global scores are obtained by combining the multi-normalised scores using the weighted fusion rules. The class as well as the score separability measures, under various noise conditions are estimated and combined algebraically, to determine the best integration weight, for the complementary modalities employed. The weight factor is optimised against the recognition accuracy. Experiments done with chimeric user database result in minimising the intersection between the genuine and the impostor score distributions, which in turn reduces the classification errors. Hence, by incorporating multi-normalisation and integration weight optimisation scheme on a unified framework, we can achieve better recognition performance and make the system robust to fluctuating inputs, even under extreme noise conditions.

Keywords: multi-normalisation; integration weights; score level fusion; noise robustness; separability; speaker biometrics; fingerprint biometrics; weighted fusion; score distributions; decision scores.

DOI: 10.1504/IJAPR.2014.063739

International Journal of Applied Pattern Recognition, 2014 Vol.1 No.2, pp.127 - 151

Received: 06 Feb 2013
Accepted: 06 May 2013

Published online: 20 Jul 2014 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article