Title: Finite element modelling and experimental analysis of the processing conditions for obtaining straight blades by isothermal forging of a nanostructured aluminium-magnesium alloy

Authors: Daniel Salcedo; Carmelo J. Luis; Rodrigo Luri; Javier León; Ignacio Puertas; Juan Pablo Fuertes; Eduardo Morquecho

Addresses: Dpto. de Ingeniería Mecánica, Energética y de Materiales, Universidad Pública de Navarra, C/Campus de Arrosadía, s/n, 31006 Pamplona, Navarra, Spain ' Dpto. de Ingeniería Mecánica, Energética y de Materiales, Universidad Pública de Navarra, C/Campus de Arrosadía, s/n, 31006 Pamplona, Navarra, Spain ' Dpto. de Ingeniería Mecánica, Energética y de Materiales, Universidad Pública de Navarra, C/Campus de Arrosadía, s/n, 31006 Pamplona, Navarra, Spain ' Dpto. de Ingeniería Mecánica, Energética y de Materiales, Universidad Pública de Navarra, C/Campus de Arrosadía, s/n, 31006 Pamplona, Navarra, Spain ' Dpto. de Ingeniería Mecánica, Energética y de Materiales, Universidad Pública de Navarra, C/Campus de Arrosadía, s/n, 31006 Pamplona, Navarra, Spain ' Dpto. de Ingeniería Mecánica, Energética y de Materiales, Universidad Pública de Navarra, C/Campus de Arrosadía, s/n, 31006 Pamplona, Navarra, Spain ' Dpto. de Ingeniería Mecánica, Energética y de Materiales, Universidad Pública de Navarra, C/Campus de Arrosadía, s/n, 31006 Pamplona, Navarra, Spain

Abstract: In this present study, both the design and the optimal manufacturing conditions for processing a straight blade by isothermal forging are shown. The starting material has been previously deformed by a severe plastic deformation (SPD) process known as equal channel angular extrusion (ECAE). As is well-known, the ECAE process is a technology which allows us to obtain materials with sub-micrometric grain size. These nanostructured materials can be employed afterwards as initial materials for other manufacturing processes. The use of these ultra fine grain sized materials (UFG) provides improved mechanical properties such as: greater hardness and mechanical strength, among others. In this present study, FEM simulations of the isothermal forging of an AA5083 previously deformed by ECAE will be carried out. The total equivalent plastic strain, the damage and the forces required to carry out the isothermal forging of this nanostructured aluminium alloy will be determined.

Keywords: FEM; finite element method; isothermal forging; equal channel angular extrusion; ECAE; severe plastic deformation; SPD; ultra fine grain; UFG materials; AA5083; modelling; straight blades; nanostructures; aluminium alloys; magnesium; nanotechnology.

DOI: 10.1504/IJMPT.2013.058968

International Journal of Materials and Product Technology, 2013 Vol.47 No.1/2/3/4, pp.63 - 79

Received: 14 Jan 2013
Accepted: 05 Oct 2013

Published online: 28 Jun 2014 *

Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article