Title: A multiple window-based co-location pattern mining approach for various types of spatial data

Authors: M. Venkatesan; Arunkumar Thangavelu

Addresses: School of Computing Science and Engineering, Vellore Institute of Technology, Vellore-14, Tamilnadu, India ' School of Computing Science and Engineering, Vellore Institute of Technology, Vellore-14, Tamilnadu, India

Abstract: Co-location pattern analysis represents the subsets of spatial events whose instances are found in close geographic proximity. Given a collection of Boolean spatial features, the co-location pattern discovery process finds the subsets of features frequently located together. Key challenges in co-location pattern analysis are modelling of neighbourhood in spatial domain, minimum prevalent threshold to generate collocation patterns and analysing extended spatial objects. We discuss the above key challenges using event centric approach and N-most prevalent co-location patterns approach. We propose a window-based model to find the neighbourhood for point spatial datasets and the multiple window model for extended spatial data objects. We also use N-most prevalent co-location patterns approach to filter the number of co-location pattern generation. We propose a more generic and efficient window-based model algorithm to find colocation patterns. Towards the end, we have done a comparative study of the existing approaches with our proposed approach.

Keywords: multiple windows; co-location patterns; pattern mining; neighbourhood modelling; spatial data; pattern discovery.

DOI: 10.1504/IJCAT.2013.056022

International Journal of Computer Applications in Technology, 2013 Vol.48 No.2, pp.144 - 154

Received: 08 May 2021
Accepted: 12 May 2021

Published online: 24 Aug 2013 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article