Title: Conducting core-sheath polyurethane-PEDOT nanofibres for conducting polymer actuator

Authors: Jin Kyoung Kwon; Hye Jin Yoo; Jae Whan Cho

Addresses: Department of Textile Engineering, Konkuk University, Gwangjin-gu, Seoul 143-701, Korea ' Department of Textile Engineering, Konkuk University, Gwangjin-gu, Seoul 143-701, Korea ' Department of Textile Engineering, Konkuk University, Gwangjin-gu, Seoul 143-701, Korea

Abstract: Conducting core-sheath nanofibres were prepared by the vapour-phase polymerisation of poly(3,4-ethylenedioxy thiophene) (PEDOT) on electrospun polyurethane (PU) nanofibres both with and without incorporating graphene nanoplatelets (GNPs) as the core part. The morphology, mechanical properties, electrical conductivity, and electroactive actuation of the core-sheath nanofibres were investigated. The thickness of the PEDOT-coated layer and the electrical conductivity of the nanofibre webs were controlled by varying polymerisation time. The incorporation of GNPs in the nanofibres significantly increased the breaking stress and modulus, as well as the conductivity of the nanofibres. It was found that the core-sheath PU-PEDOT nanofibre webs were the most effective for enhancing the displacement of a conducting polymer actuator, whereas the GNP-incorporating PU-PEDOT nanofibre webs showed reduced actuator displacement because of a high modulus.

Keywords: conducting polymers; core-sheath nanofibres; polymer actuators; graphene nanoplatelets; nanotechnology; PEDOT; polyurethane nanofibres; morphology; mechanical properties; electrical conductivity; electroactive actuation.

DOI: 10.1504/IJNT.2013.054208

International Journal of Nanotechnology, 2013 Vol.10 No.8/9, pp.661 - 670

Available online: 30 May 2013 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article