Title: Coreference resolution with multiple semantic information based on emergency news

Authors: Ning Pang

Addresses: The College of Applying Science, Taiyuan University of Science and Technology, Taiyuan, Shanxi, China

Abstract: Effectively collecting and extracting useful information from the relevant news reports are the keys to raise the response capabilities to handle emergencies. So an important subtask is how to resolve the coreference phenomenon. In this paper, we present a coreference resolution approach based on maximum entropy model in paroxysmal events news reports. The pronouns, nouns and noun phrases which refer to the same entity in a Chinese news report can be extracted by the approach. A group of semantic features are used to coreference resolution, which includes the semantic class features, the semantic role features based on the pronoun refining, the semantic-related features, the redirection features and context features based on Wikipedia. We compare their performance on the testing corpus. The training corpus contains 200,000 Chinese characters and the testing corpus contains 50,000. The experimental results show the improvement of coreference resolution after adding selected semantic knowledge.

Keywords: China; information processing; paroxysmal events; coreference resolution; semantic features; maximum entropy model; Chinese news reports; emergency news; semantics; emergency response; emergency management; information extraction; information retrieval.

DOI: 10.1504/IJWMC.2013.054056

International Journal of Wireless and Mobile Computing, 2013 Vol.6 No.2, pp.152 - 157

Received: 03 Dec 2012
Accepted: 28 Feb 2013

Published online: 15 May 2013 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article