Title: Offline signature verification and identification by hybrid features and Support Vector Machine

Authors: Bailing Zhang

Addresses: Department of Computer Science and Software Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China

Abstract: This paper emphasised an approach for offline signature verification and identification. Two image descriptors are studied, including Pyramid Histogram of Oriented Gradients (PHOG), and a direction feature proposed in the literature. Compared with many previously proposed signature feature extraction approaches, PHOG has advantages in the extraction of discriminative information from handwriting signature images. The significance of classification framework is stressed. With the benchmarking database ||Grupo de Procesado Digital de Senales|| (GPDS), satisfactory performances were obtained from several classifiers. Among the classifiers compared, SVM is clearly superior, giving a False Rejection Rate (FRR) of 2.5% and a False Acceptance Rate (FAR) 2% for skillful forgery, which compares sharply with the latest published results on the same dataset. This substantiates the superiority of the proposed method. The related issue offline signature recognition is also investigated based on the same approach, with an accuracy of 99% on the GPDS data from SVM classification.

Keywords: offline signature verification; offline signature recognition; classification; PHOG; pyramid histogram of oriented gradients; direction features; SVM; support vector machines.

DOI: 10.1504/IJAISC.2011.042717

International Journal of Artificial Intelligence and Soft Computing, 2011 Vol.2 No.4, pp.302 - 320

Accepted: 23 Apr 2011
Published online: 31 Mar 2015 *

Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article