Title: Optimisation of reinforcement learning algorithm applied to dynamic network

Authors: Shrirang Ambaji Kulkarni, G. Raghavendra Rao

Addresses: Department of Computer Science and Engineering, Gogte Institute of Technology, Belgaum – 590008, Karnataka, India. ' Department of Computer Science and Engineering, National Institute of Engineering, Mananthody Road, Mysore – 570008, Karnataka, India

Abstract: Mobile ad-hoc network represent a class of dynamic networks where nodes are non-stationary and the topology is changing rapidly. The routing algorithms for these types of networks play an important role. Traditional routing algorithms do not perform optimally under congestion and high-speed situations. Reinforcement learning-based routing algorithm SAMPLE holds a lot of potential to these types of problems but performs worse as compared to AODV and DSR under the Random Waypoint Mobility Model. To overcome the bottleneck of SAMPLE in terms of performance in a pure ad-hoc environment and enable its optimal performance under dynamic scenarios, we propose a mobility model to characterise group mobility under real city like scenario. The proposed model will be tested for its performance using suitable mobility metrics, verified statistically and then applied to a reinforcement learning algorithm SAMPLE to study its impact.

Keywords: routing protocols; mobility models; optimisation; mobile ad-hoc networks; MANETs; reinforcement learning; mobile networks; dynamic networks; modelling; bottlenecks.

DOI: 10.1504/IJICT.2011.041742

International Journal of Information and Communication Technology, 2011 Vol.3 No.2, pp.101 - 115

Published online: 02 Aug 2011 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article