Title: K-41 optimised approximate deconvolution models

Authors: William Layton, Iuliana Stanculescu

Addresses: Department of Mathematics, University of Pittsburgh, USA. ' Department of Mathematics, University of Pittsburgh, USA

Abstract: Average the Navier–Stokes equations, with a local, spatial convolution type filter.
The result system is not closed due to __
The result system is not closed due to uu.
Let D be a bounded linear operator which satisfies u = D(ū) + O(δα) where δ is the filter width and α ≥ 2. Using D as an approximate filter inverse yields the closure
uu = D(ū)D(ū)+O(δα)

The residual stress of this model (and related models) depends directly on the deconvolution error u − D(ū). We find deconvolution parameters that minimise the deconvolution error for homogeneous, isotropic turbulence. This work addresses: How to adapt deconvolution to homogeneous, isotropic turbulent flows? and What is the increase in accuracy?

Keywords: Navier–Stokes equations; large eddy simulation; LES; approximate deconvolution; homogeneous turbulence; isotropic turbulence; deconvolution error.

DOI: 10.1504/IJCSM.2007.016554

International Journal of Computing Science and Mathematics, 2007 Vol.1 No.2/3/4, pp.396 - 411

Published online: 10 Jan 2008 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article