Title: Prediction of cardiac disease using online extreme learning machine

Authors: Sulekha Saxena; Vijay Kumar Gupta; P.N. Hrisheekesha; R.S. Singh

Addresses: Dr. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India ' Inderprastha Engineering College, Ghaziabad, Uttar Pradesh, India ' Chandigarh Group of Colleges, Landran, Mohali, Punjab, India ' Electronics & Communication Eng (SIG) Department, School of Electrical Engineering & Computing, ASTU, Adama, Ethiopia

Abstract: This paper presents an automated Machine Learning (ML) algorithm to detect the Coronary Disease like Congestive Heart Failure (CHF) and Coronary Artery Disease (CAD). The proposed method has been employed as a combination of non-linear feature extraction methods: Online Sequential machine (OS-ELM) and Linear Discriminate Analysis (LDA) as well as Generalised Discriminate Analysis (GDA) as feature reduction algorithms. For training and validation of ML, 12 non-linear features were extracted from Heart Rate Variablility (HRV) signal. The numerical experiments were carried out on the sets as CAD-CHF, YOUNG-ELDERLY-CAD and YOUNG-ELDERLY-CHF subjects. The numerical simulation results clearly have shown that GDA combined with OS-ELM gives better detection performance compared to OSELM. To test the robustness of proposed method the classification performance like accuracy, positive prediction value, sensitivity and specificity were calculated on 100 trials and it achieved average performance accuracy of 99.77% for YOUNG-ELDERLY-CAD and 100% for CAD-CHF and YOUNG-ELDERLY CHF subjects.

Keywords: lempel-ziv; Poincare plot; OSELM; sample entropy; dimension reduction method; detrended fluctuation analysis.

DOI: 10.1504/IJCAT.2021.119773

International Journal of Computer Applications in Technology, 2021 Vol.66 No.2, pp.172 - 191

Received: 03 Sep 2020
Accepted: 22 Nov 2020

Published online: 14 Dec 2021 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article