Title: Two redundant rule based algorithms for time-delay nonlinear models: least squares iterative and particle swarm optimisation

Authors: Yuelin Xu; Yingjiao Rong

Addresses: The Science and Technology on Near-Surface Detection Laboratory, Wuxi, 214028, China ' The Science and Technology on Near-Surface Detection Laboratory, Wuxi, 214028, China

Abstract: Two redundant rule based methods are developed for a time-delay nonlinear model in this paper. By using the redundant rule, the time-delay nonlinear model can be turned into a redundant model which contains some redundant terms. Then the least squares iterative and the particle swarm optimisation algorithms are applied to update the parameters and the corresponding time-delay. Compared with the redundant rule based least squares iterative algorithm, the redundant rule based particle swarm optimisation algorithm is more efficient for nonlinear models with complex structures. A simulation example shows that the proposed algorithms are effective.

Keywords: nonlinear model; particle swarm optimisation algorithm; time-delay; parameter estimation; redundant rule; least squares iterative.

DOI: 10.1504/IJMIC.2020.114198

International Journal of Modelling, Identification and Control, 2020 Vol.35 No.3, pp.258 - 264

Received: 11 May 2020
Accepted: 20 Jun 2020

Published online: 09 Apr 2021 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article