Title: Prediction of risk factors for pre-diabetes using a frequent pattern-based outlier detection

Authors: A.M. Rajeswari; C. Deisy

Addresses: Department of Computer Science and Engineering, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India ' Department of Computer Science and Engineering, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India

Abstract: Pre-diabetes is the forerunner stage of diabetes. Pre-diabetes develops type-2 diabetes slowly without any predominant symptoms. Hence, pre-diabetes has to be predicted apriori to stay healthier. The risk factors for pre-diabetes are abnormal in nature and are found to be present in a few negative test samples (without diabetes) of Pima Indian Diabetes data. The conventional classifiers will not be able to spot these abnormal samples among the negative samples as a separate group. Hence, we propose algorithm frequent pattern-based outlier detection (FPBOD) to spot such abnormal samples (outliers) as a separate group. FPBOD uses an associative classification technique with few surprising measures like lift, leverage and dependency degree to detect outliers. Among which, lift measure detects more precise outliers that are able to correctly classify the person who did not have diabetes, but just takes the risky chance of being a diabetic patient.

Keywords: outlier detection; pre-diabetes; infrequent pattern; associative classification; surprising measure.

DOI: 10.1504/IJBET.2020.10032970

International Journal of Biomedical Engineering and Technology, 2020 Vol.34 No.2, pp.152 - 171

Received: 05 Jul 2017
Accepted: 20 Nov 2017

Published online: 20 Oct 2020 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article