Title: Two-phase palmprint identification

Authors: Hemantha Kumar Kalluri; Munaga V.N.K. Prasad; Arun Agarwal; Raghavendra Rao Chillarge

Addresses: CSE Department, Vignan's Foundation for Science Technology and Research (Deemed to be University), Andhra Pradesh, India ' Institute for Development and Research in Banking Technology (IDRBT), Castle Hills, Masabtank, Hyderabad, India ' SCIS, University of Hyderabad, Hyderabad, Telangana, India ' SCIS, University of Hyderabad, Hyderabad, Telangana, India

Abstract: In this paper, a two-phase palmprint recognition approach is proposed based on statistical features and wide principal line image features through dynamic region of interest (ROI). The ROI is segmented into overlapping segments by six schemes, and the statistical features are extracted directly from the segments. The algorithm focuses on the extraction of statistical features based on standard deviation and coefficient of variation. A modified dissimilarity distance is proposed for computing the distance between two palmprints. The procedures are presented for determining the size and location of the common region of training images dynamically. Experiments are conducted by using statistical features and the combination of statistical and wide principal line image features. The results show that the correct recognition rate (CRR) of the proposed approach is better than existing methods for PolyUPalmprint database.

Keywords: biometrics; clustering; palmprint identification; palmprint recognition.

DOI: 10.1504/IJBM.2020.110823

International Journal of Biometrics, 2020 Vol.12 No.4, pp.446 - 467

Received: 28 Sep 2019
Accepted: 10 May 2020

Published online: 29 Oct 2020 *

Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article