Title: Possible effects of emoticon and emoji on sentiment analysis web services of work organisations

Authors: Habib Ullah Khan; Duncan Peacock

Addresses: Department of Accounting and Information Systems, College of Business and Economics, Qatar University, P.O. Box 2713, Doha, Qatar ' Department of Computer Science, University of Liverpool, UK; The Chartered Institute of IT, University of Sheffield, UK

Abstract: Work organisations are increasingly interested in using sentiment analysis algorithms to get rapid feedback from microblogging platforms such as Twitter. However, real-life posts can differ from the training data. The subject domain may vary or and emojis and emoticons used to clarify, enhance or even reverse the sentiment of a post. This paper studies the effect of emojis, emoticons and subject on polarity classification using nine tweet-related sentiment analysis web services. A web application was developed to extract from the live Twitter stream, and twelve specific research test sets were created. These were labelled by volunteers, uploaded back into the application and then compared against nine different sentiment analysis web services using two- and three-class accuracy measures. Distinct differences were found in the performance of the sentiment analysis web services of organisations. Sentiment analysis web services can vary significantly in classification performance depending and the effect of emoticons and emojis.

Keywords: Twitter; sentiment analysis; polarity classification; web services; emoticons; emojis; comparison; benchmark.

DOI: 10.1504/IJWOE.2019.10026056

International Journal of Work Organisation and Emotion, 2019 Vol.10 No.2, pp.130 - 161

Received: 06 Sep 2018
Accepted: 17 Jun 2019

Published online: 26 Dec 2019 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article