Title: Khmer-Chinese bilingual LDA topic model based on dictionary

Authors: Xiaohui Liu; Xin Yan; Guangyi Xu; Zhengtao Yu; Guangshun Qin

Addresses: School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, 650500,China ' School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, 650500,China ' Yunnan Nantian Electronics Information Co., Ltd., Kunming, Yunnan, 650050, China ' School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China ' School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China

Abstract: Multilingual probabilistic topic models have been widely used in topic of mining area in multilingual documents, this paper proposes the Khmer-Chinese bilingual latent Dirichlet allocation (KCB-LDA) model based on the bilingual dictionary. With the bilingual attribute of entries in dictionary, this method first maps the words expressing same semantic meaning to the concept abstract layer, then group concepts into the same topic space. Finally, documents in different languages will share the same latent topics. The same topics can be represented in both Chinese and Khmer jointly when given a bilingual corpus by the introduction of the concept layer. The experimental results show that our topic modelling approach has better predictive power.

Keywords: multilingual probabilistic topic models; bilingual dictionary; Khmer-Chinese bilingual latent Dirichlet allocation; KCB-LDA; concept.

DOI: 10.1504/IJCSM.2019.104028

International Journal of Computing Science and Mathematics, 2019 Vol.10 No.6, pp.557 - 565

Available online: 05 Dec 2019 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article