Title: A method of crime rate forecast based on wavelet transform and neural network

Authors: Li Mao; Wei Du

Addresses: Guangdong Police College, No.118, Wen Sheng Zhuang Road, Baiyun District, Guangzhou, 510440, China ' Guangdong Police College, No.118, Wen Sheng Zhuang Road, Baiyun District, Guangzhou, 510440, China

Abstract: Accurate prediction of crime is highly challenging. In order to improve efficiency of situational crime prevention, the temporal distribution of the crime rate within 24 hours was analysed and a forecast model combining discrete wavelet transform and resilient backpropagation neural network (DWT-RBPNN) is presented. First, historical crime incidence sequences obtained by the sliding window were decomposed by discrete wavelet transform. Then RBPNN trained decomposition sequences to predict the incidence of future trends and details. Finally, the trends and details were reconstructed to get the final prediction sequence. The experimental results showed that the proposed model has relatively high accuracy and feasibility on the crime rate prediction compared with single method of BPNN. The utility of the DWTRBPNN model can offer an exciting new horizon to provide crime rate forecasting and early warning in the situational crime prevention.

Keywords: crime rate forecasting; sliding window; discrete wavelet transform; DWT; neural network; resilient back-propagation.

DOI: 10.1504/IJES.2019.103990

International Journal of Embedded Systems, 2019 Vol.11 No.6, pp.731 - 737

Received: 29 May 2017
Accepted: 10 Nov 2017

Published online: 02 Dec 2019 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article