Title: Segmentation and recognition of characters on Tulu palm leaf manuscripts

Authors: P.J. Antony; C.K. Savitha

Addresses: Department of Computer Science, AJ Institute of Engineering and Technology, Mangalore, VTU, India ' Department of Computer Science, KVG College of Engineering, Sullia, VTU, India

Abstract: This paper proposes an efficient method for segmentation and recognition of handwritten characters from Tulu palm leaf manuscript images. The proposed method uses an automated tool with a combination of thresholding and edge detection technique to binarise the image. Further projection profile with connected component analysis is used to line and character segmentation. Deep convolution neural network (DCNN) model used here to extract features and recognise segmented Tulu characters efficiently with a recognition rate of 79.92%. The results are verified using benchmark dataset, the AMADI_LontarSet to generalise our model to handwritten character recognition task. The results showed that our method outperforms from the existing state of art models.

Keywords: handwritten character recognition; palm leaf; segmentation; deep convolution neural network; DCNN; Tulu.

DOI: 10.1504/IJCVR.2019.102283

International Journal of Computational Vision and Robotics, 2019 Vol.9 No.5, pp.438 - 457

Received: 15 Jan 2018
Accepted: 07 May 2018

Published online: 11 Sep 2019 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article