Title: Improved Bayesian regularisation using neural networks based on feature selection for software defect prediction

Authors: R. Jayanthi; M. Lilly Florence

Addresses: MCA Department, PESIT-BSC, Bangalore, Karnataka, India ' Department of Computer Science and Engineering, Adhiyamaan Engineering College, Hosur, Tamilnadu, India

Abstract: Demand for software-based applications has grown drastically in various real-time applications. However, software testing schemes have been developed which include manual and automatic testing. Manual testing requires human effort and chances of error may still affect the quality of software. To overcome this issue, automatic software testing techniques based on machine learning techniques have been developed. In this work, we focus on the machine learning scheme for early prediction of software defects using Levenberg-Marquardt algorithm (LM), Back Propagation (BP) and Bayesian Regularisation (BR) techniques. Bayesian regularisation achieves better performance in terms of bug prediction. However, this performance can be enhanced further. Hence, we developed a novel approach for attribute selection-based feature selection technique to improve the performance of BR classification. An extensive study is carried out with the PROMISE repository where we considered KC1 and JM1 datasets. Experimental study shows that the proposed approach achieves better performance in predicting the defects in software.

Keywords: defect prediction model; machine learning techniques; software defect prediction; software metrics; gradient descent optimisation; gradient-based approach; feature subset selection; cross entropy error function; adaptive computation process.

DOI: 10.1504/IJCAT.2019.100297

International Journal of Computer Applications in Technology, 2019 Vol.60 No.3, pp.225 - 241

Received: 12 Mar 2018
Accepted: 04 Sep 2018

Published online: 25 Jun 2019 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article