Analytical and experimental investigation of thermal efficiency improvement of thermochemical water splitting for hydrogen production
by Samane Ghandehariun; Marc A. Rosen; Greg F. Naterer; Zhaolin Wang
International Journal of Process Systems Engineering (IJPSE), Vol. 3, No. 1/2/3, 2015

Abstract: This paper examines heat recovery in a thermochemical Cu-Cl cycle for efficient hydrogen production. It is essential to recover heat within the Cu-Cl cycle to improve the overall thermal efficiency of the cycle. A major portion of heat recovery can be achieved by cooling and solidifying the molten salt exiting an oxygen reactor. Heat recovery from the molten salt is achieved by dispersing the molten stream into droplets. In this paper, an analytical study and experimental investigation of the thermal phenomena of a falling droplet quenched into water is presented, involving the droplet surface temperature during descent and resulting composition change in the quench process. The results show it is feasible to quench the molten salt droplets for an efficient heat recovery process without introducing any material imbalance for the overall cycle integration.

Online publication date: Thu, 27-Aug-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Process Systems Engineering (IJPSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com