Acoustic road-type estimation for intelligent vehicle safety applications
by Pınar Boyraz
International Journal of Vehicle Safety (IJVS), Vol. 7, No. 2, 2014

Abstract: A low-cost acoustic road-type classification system is proposed to be used in road-tyre friction force estimation in active safety applications. The system employs audio signal processing and extracts features such as linear predictive coefficients (LPC), mel-frequency cepstrum coefficients (MFCC) and power spectrum coefficients (PSC). The features are extracted using time windows of 0.02, 0.05 and 0.1 seconds in order to find the best representative window for the signal properties which should also be as short as possible for active safety systems. In order to find the best feature space, a variance analysis based approach is considered to represent the road types as distinguished classes. Optimised feature space is classified using artificial neural networks (ANN). The results show that the designed ANN can classify the road types with 91% accuracy at worst condition. To demonstrate the value of the system, a case study including traction control application is reported.

Online publication date: Thu, 30-Oct-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Safety (IJVS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com