Life cycle costing of a self-sufficient solar-hydrogen system
by P.C. Ghosh, N.K. Bansal, B. Emonts, D. Stolten
International Journal of Global Energy Issues (IJGEI), Vol. 21, No. 4, 2004

Abstract: In a renewable energy-based system, energy storage must match the energy demand with supply. Usually a lead-acid battery is utilised as a short-term energy buffer. A system, which has a combination of an electrolyser and a high-pressure hydrogen tank for long-term energy storage, is considered in this paper. The cost intensive components are sized considering the least cost and by performing a life cycle costing of the system. The optimum battery capacity obtained is 19 kWh, which is equivalent to 2.2 days of autonomy. At present, energy storage cost in the long-term storage is found 2.16 per kWh whereas the cost goes down to 0.92 per kWh when the target cost of the fuel cell and the electrolyser is considered. Around 15–20% of the demand is supplied by the long-term storage.

Online publication date: Thu, 09-Dec-2004

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Energy Issues (IJGEI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com