Performance comparison of rotating disk ultrafiltration membrane module, a high shear device with cross-flow module
by Suman Dutta; Projjwal Sarkar; Chiranjib Bhattacharjee; Siddhartha Datta
International Journal of Environment and Pollution (IJEP), Vol. 49, No. 3/4, 2012

Abstract: Apart from plenty of advantages, the main disadvantage of ultrafiltration is rapid flux decay due to concentration polarisation and membrane fouling. The purpose of this work is to overcome this problem employing shear enhanced membrane filtration technique. To accomplish this, two different membrane modules were used; one was a standard cross-flow membrane module and the other one was the stirred rotating disk membrane (RDM) module. A detailed comparative study between these two membrane (PES) modules with different operating conditions was made using 500 ppm BSA solution. Hydrodynamic studies on permeate flux and solute rejection characteristics have been made. It was observed that membrane rotation of 50 rpm was sufficient to alleviate membrane fouling and concentration polarisation. Comparative study has shown that at trans-membrane pressure (TMP) 196 kPa, permeate flux was two times higher for RDM with 50 rpm membrane speed than that of cross-flow membrane module. However, the limitation of the rotating disk systems could be their limited membrane area per unit volume and higher power consumption.

Online publication date: Wed, 19-Nov-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Pollution (IJEP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com