Accurate and efficient prediction of acoustical performance of noise barriers against transport noise pollution
by S.Z. Peng, H.M. Sun
International Journal of Vehicle Noise and Vibration (IJVNV), Vol. 5, No. 1/2, 2009

Abstract: An improved acoustical wave propagator (I_AWP) technique with high-order absorbing boundary technique is introduced to evaluate the acoustical wave interaction for noise barriers, providing the dual benefit of preserving high numerical accuracy (boundary conditions have been properly treated) and obtaining high computational efficiency (using a larger time step in the calculation). The aim is to establish a framework for effective design of noise barriers based on (a) in the time-domain, the evolution of wave propagation and analyses of acoustical-structure interaction, then a good understanding of time-domain acoustical wave diffraction (one key noise abatement mechanism) can be achieved, and (b) in the frequency-domain, the effects of noise barriers with different structures and noise sources at different locations on sound pressure distribution, especially noise barriers with a simple smart structure (membranes) are investigated in detail. These investigations produce a database for effective and optimal design of noise barriers. More importantly, the outcome can provide a deep insight to the acoustical performance of noise barriers in reducing noise pollution in urban environments and other applications.

Online publication date: Mon, 09-Nov-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Noise and Vibration (IJVNV):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com