Computationally attractive non-linear models for combinatorial optimisation
by Bahram Alidaee, Gary A. Kochenberger, Karen Lewis, Mark Lewis, Haibo Wang
International Journal of Mathematics in Operational Research (IJMOR), Vol. 1, No. 1/2, 2009

Abstract: A common approach to many combinatorial problems is to model them as 0/1 linear programs. This approach enables the use of standard linear program-based optimisation methodologies that are widely employed by the operation research community. While this methodology has worked well for many problems, it can become problematic in cases where the linear programs generated become excessively large. In such cases, linear models can lose their computational viability. In recent years, several articles have explored the computational attractiveness of non-linear alternatives to the standard linear models typically adopted to represent such problems. In many cases, comparative computational testing yields results favouring the non-linear models by a wide margin. In this article, we summarise some of these successes in an effort to encourage a broader view of model construction than the conventional wisdom, i.e. linear modelling, typically affords.

Online publication date: Sat, 31-Jan-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mathematics in Operational Research (IJMOR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com