A robust scheduling rule using a Neural Network in dynamically changing job-shop environments
by Toru Eguchi, Fuminori Oba, Satoru Toyooka
International Journal of Manufacturing Technology and Management (IJMTM), Vol. 14, No. 3/4, 2008

Abstract: Scheduling plays a critical role in job-shops that produce a wide variety of different jobs. This paper presents a robust and effective scheduling rule using a Neural Network (NN) trained as a priority rule for these complex and dynamic job-shops. The training is efficiently carried out through two stages: the first for effective scheduling under specific scheduling conditions, and the second for robust scheduling under various scheduling conditions. Numerical experiments under various scheduling conditions in which the level of machine utilisation and due-date tightness dynamically changes show that a trained NN outperforms the best dispatching rules available in the literature.

Online publication date: Fri, 28-Mar-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Manufacturing Technology and Management (IJMTM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com