Stacking-based multi-objective approach for detection of smart power grid attacks using evolutionary ensemble learning
by Manikant Panthi; Tanmoy Kanti Das
International Journal of Critical Infrastructures (IJCIS), Vol. 20, No. 3, 2024

Abstract: Smart power grid (SPG) has gained a reputation as the advanced paradigm of the power grid. It provides a medium for exchanging real-time data between the company and users through the advanced metering infrastructure delivering transparent and resilient service to electricity consumers. The widespread deployment of remotely accessible networked equipment for grid monitoring and control has vastly increased the surface of SPG for attackers to locate vulnerable points. The early and accurate identification of the above counteracts is paramount to ensure stable and efficient power distribution. This paper proposes a stacking-based multi-objective evolutionary ensemble scheme to identify various attacks in the SPG. The proposed method used a non-dominated sorting genetic algorithm to learn the non-linear, overlapping, and complex electrical grid features to predict the type of malicious attacks. The experimental results and comparison using multiclass dataset validate the presented 'Stacking-NSGA-II' approach notably outperformed the others benchmark classifiers.

Online publication date: Fri, 31-May-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Critical Infrastructures (IJCIS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com