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Abstract: miRNAs, a subtype of non-coding RNAs, have a length of about  
18–22 nucleotides. Studies have shown that miRNAs play an important role in 
the initiation and progression of many human diseases. For this reason, it is 
very significant to know the miRNAs associated with diseases. Because 
experimental studies to identify these associations are expensive and  
time-consuming, many computational methods have been developed to identify 
disease-related miRNAs. In this study, we propose a calculation method based 
on nearest known neighbours and matrix completion. ROC curves of our 
suggested method were plotted using two commonly used cross-validation 
techniques such as five-fold and LOOCV, and also AUC values were 
calculated in both validation techniques. Moreover, we carried out case studies 
on breast cancer, lung cancer, and lymphoma to further demonstrate the 
predictive accuracy of our method. As a result, our proposed method can be 
used with confidence to identify possible miRNA-disease associations. 
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1 Introduction 

microRNAs (miRNAs) are a single-stranded and endogenous RNA molecule found in 
humans, animals, plants, and viruses, that regulates gene expression by targeting 
messenger RNAs (Ambros, 2001; Bartel, 2004). Human cells contain many miRNAs, a 
subtype of non-coding RNA approximately 18–22 nucleotides long (Toprak and 
Eryilmaz, 2021; Chandra et al., 2017). miRNAs are involved in numerous biological 
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processes that are vital to human life. Especially miRNAs synthesise proteins and can 
regulate many biological processes, including cell division, cell proliferation, and cell 
death (Wang et al., 2022). Although the first miRNA was discovered by Le et al. in 
Caenorhabditis elegans in 1993 (Lee et al., 1993), it was not identified as a different 
biological regulator class up to 2000s, but rather as junk RNA. However, in recent years, 
an intensive study has been carried out on miRNAs. It has also been confirmed by 
experimental studies that the dysregulation of miRNAs is associated with the 
developmental processes of many human diseases (Lynam-Lennon et al., 2009). 
Research on miRNA has clearly demonstrated that they were responsible for the initiation 
and development of many human diseases, especially many cancer types such as breast 
cancer, lung cancer and lymphoma. For instance, miRNA-196 and miRNA-10a, which 
play a role in the development of breast cancer and are responsible for the levels of 
malignant properties of cancer cells, are localised in homeobox clusters (Calin et al., 
2004; Heneghan et al., 2009). miRNA-17 is under expressed or over expressed in breast 
tumour tissue and also is regulate BRCA1/2, ATM, PTEN, and CHEK2 (Shenouda and 
Alahari, 2009). However, it has been observed that CYP1B1 is overexpressed and 
CYP1B1 and miRNA-27b expression levels are inversely related in breast cancer 
(Shenouda and Alahari, 2009). Firstly, when the expression levels of miRNA-206 
between normal and breast cancer tissues were compared with the miRNA microarray 
method, it was observed that it suppressed breast cancer (O’Day and Lal, 2010). 

In the lung cancer, it has been determined that there is let-7 down regulated, and it has 
been reported that high expression levels of let-7 inhibit lung cancer (Calin et al., 2004; 
Johnson et al., 2005). miRNA-17-3p, miRNA-18, miRNA-19a, and miRNA-20 
indicating overexpression of the miRNA-17-92 cluster in lung cancer cell tissues 
(Hayashita et al., 2005). In addition, amplification and overexpression of the  
miRRNA-17-92 miRNA cluster have been shown to play an important role in the 
development of lung cancer (Hayashita et al., 2005) and lymphoma (Ota et al., 2004; He 
et al., 2005). 

In lymphoma, it has been revealed by studies that miRNA-155 is overexpressed 
(Mashima, 2015). In chronic lymphocytic leukemia, miRNA-15a and miRNA-16-1 
targeting the BCL2 oncogene act as down-regulated tumour suppressors (Calin and 
Croce, 2006). In addition, studies have shown that the miRNA-17-92 cluster is amplified 
in lymphoma (Tagawa and Seto, 2005; Ota et al., 2004). Further research is needed to 
fully understand the role of miRNAs in lymphoma and how they can be targeted for 
therapeutic purposes. Table 1 shows some miRNA types with increased and decreased 
expression levels in breast cancer, lung cancer, and lymphoma. 
Table 1 Expression levels of miRNAs 

Disease Decreased (downregulated) Increased (upregulated) 
Breast (Iorio et al., 2005; 
Mattie et al., 2006) 

miRNA-10b, miRNA-125b, 
miRNA-145, miRNA-155, 

miRNA-17-5p, miRNA-27b 

miRNA-21, miRNA-29b-2 

Lung (Lowery et al., 2008; 
Lu et al., 2005; Volinia  
et al., 2006) 

let-7 family miRNA-17-5p, miRNA-17-92 
cluster 

Lymphoma (Lowery et al., 
2008; Volinia et al., 2006) 

miRNA-15a miRNA-10a, miRNA-155, 
miRNA-17-92 cluster 
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miRNAs are small non-coding RNAs that play a crucial role of gene expression 
regulation. It has been seen in studies that miRNAs are responsible for the initiation and 
progression of various cancer types, such as breast cancer, lung cancer, and lymphoma. 
Because knowledge of miRNA-disease relationships is so important, many databases 
such as HMDD (Li et al., 2014), dbDEMC (Yang et al., 2010), miR2Disease (Jiang et al., 
2009), deepBase (Yang et al., 2009), miRBase (Kozomara and Griffiths-Jones, 2013), 
and miRGen (Alexiou et al., 2009) have been created to help researchers examine 
miRNA-disease relationships. 

Due to the high cost and time required for biological experimental studies to identify 
disease-associated miRNAs, researchers have developed computational models to predict 
and analyse the relationships between miRNAs and diseases. In recent years, scientists 
have developed new computational techniques such as MCMDA (Li et al., 2017), 
RKNNMDA (Chen et al., 2017), IMCMDA (Liu et al., 2021a), GRMDA (Chen et al., 
2018e), MDHGI (Chen et al., 2018f), SACMDA (Li et al., 2021), SPLPMDA (Toprak, 
2022), LRSSLMDA (Chen and Huang, 2017), MaxFlow (Yu et al., 2017), BNPMDA 
(Chen et al., 2018d), NDAMDA (Chen et al., 2018c), EGBMMDA (Chen et al., 2018a), 
NSEMDA (Wang et al., 2019), BRMDA (Zhu et al., 2021), SMALF (Liu et al., 2021b), 
and DFELMDA (Liu et al., 2022) to predict disease-related miRNAs. In addition, Toprak 
and Eryilmaz Dogan (2021) obtained successful results in their proposed model for 
miRNA-disease association prediction. This model uses a combination of  
similarity-based algorithms and machine learning-based algorithms to identify potential 
miRNA biomarkers for cancer diagnosis and treatment. 

The steps used in this study to predict potential miRNA-disease associations can be 
described as follows. 

1 Functional similarity matrix of miRNA and disease semantic similarity matrix have 
been generated. 

2 Gaussian Interaction Profile (GIP) kernel similarity matrices were formed for 
miRNAs and diseases. Then, these all-miRNA similarity matrices and all disease 
similarity matrices were integrated to form the new miRNA matrix and new disease 
matrix. 

3 The obtained miRNA and disease integrated similarity matrices were used to set a 
new adjacency matrix by weighted k-nearest known neighbours (WKNKN) method. 

4 Then, inductive matrix completion (IMC) method was used to estimate potential  
miRNA-disease relationships. 

The IMC is a graph-based method that uses a partially observed matrix and a graph to 
complete the missing data. The effectiveness of our proposed model was evaluated using 
cross validation techniques like five-fold and leave-one-out, and case studies were 
conducted to further confirm the methodology. The results of the experimental tests 
showed that the proposed method is efficient in forecasting possible disease related 
miRNAs. 
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2 Materials and methods 

2.1 Data set of known diseases related miRNAs 

The known human miRNA-disease relations data that we used in this study  
were obtained from the HMDD database (Li et al., 2014). This dataset includes  
5,430 confirmed miRNA-disease associations with 495 miRNAs (denoted by set  
m = {m1, m2, …, m495} and 383 diseases (denoted by set d = {d1, d2, …, d383}). Adjacency 
matrix was created by obtaining 1 if an association between miRNA and disease is 
confirmed, and 0 if there is no relationship. The mathematical expression can be given as 
follows. 

( )
( )

( ), ( ) 1 miRNA ( ) has association with disease ( )
( ), ( ) 0 miRNA ( ) has no association with disease ( ))

A m i d j m i d j
A m i d j m i d j

 =
 ==

 (1) 

Consequently, a miRNA-disease matrix was obtained, called adjacency matrix A, 
consisting of 495 miRNAs and 383 diseases. 

2.2 Data set of miRNA functional similarity 

miRNA functional similarity refers to the degree to which two different miRNAs have 
similar or overlapping targets and biological functions. This can be determined through 
various computational and experimental methods, such as analysing the sequence 
complementarity between miRNAs and their targets, comparing their expression patterns 
in different tissues or under different conditions, and examining the phenotypic 
consequences of their loss or overexpression. Understanding miRNA functional 
similarity can be important for predicting the potential consequences of perturbing 
miRNA expression in different contexts, and for identifying miRNA-based therapies for 
various diseases.  

In 2010, Wang et al. proposed “a method for calculating functional similarity scores of 
miRNAs, based on the general assumption that miRNAs tend to be associated with 
similar diseases and vice versa” (Wang et al., 2010). The functional similarities value 
they have calculated can be obtained from the web site (http://www.cuilab.cn/f 
iles/images/cuilab/misim.zip). From these data, we created an FS matrix of 495 × 495 
dimensions to represent the functional similarities of miRNAs. Where, FS(m(i), m(j)) 
denotes the functional similarity score between miRNA m(i) and miRNA m(j). 

2.3 Disease semantic similarity model 1 

Directed acyclic graph (DAG) structure is a type of graphical representation that can be 
used to capture the relationships between different diseases based on their semantic 
similarity. In a DAG structure, while each node represents a disease, the edges between 
nodes show how semantically similar one disease is to another. DAG structures of ‘breast 
neoplasms’ and ‘lymphoma; are shown in Figure 1. 

 



   

 

   

   
 

   

   

 

   

    Identification of disease-related miRNAs based on WKNKN 235    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 1 An example of directed acyclic graph structure (see online version for colours) 

  

The direction of the edges reflects the directionality of the relationships between diseases, 
with edges pointing from more general or broad concepts to more specific or narrow 
concepts. One advantage of using a DAG structure to represent disease semantic 
similarity is that it allows for the representation of hierarchical relationships between 
diseases, where some diseases are more specific subtypes or subcategories of more 
general diseases. This can be useful for organising and navigating large datasets of 
diseases and for making inferences about the relationships between different diseases.  

DAG structure of each disease was created by using medical subject  
headings (MeSH) definitions obtained from the National Library of Medicine 
(http://www.nlm.nih.gov/) web page. In a DAG, the vertices (also called nodes) represent 
the entities, and the edges represent the relationships between the entities. For example, 
the DAG structure of disease D includes D itself, ancestor nodes of D, and all nodes from 
parent to child nodes. The contribution score of disease t in DAG(D) to disease D can be 
calculated with the following equation. 

( ) 1, if 
( ) max 0.5 ( ) children of , if 

D

D D

D t t D
D t D t t t t D

= =
′ ′= ∗ ∈ ≠





 (2) 

Using the following equation, each disease’s semantic value is calculated. 

( ) ( )
D

Dt T
V D D t

∈
=  (3) 

After calculating the semantic scores for each disease, the semantic similarity values 
between the diseases are calculated as follows: 
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( )
( )

( ) ( )
1 2

1 2

1 2
1 2

( ) ( )
1 ,  D Dt T

D t D t
SS D D

V D V D
∩∈

+
=

+


 (4) 

These calculations are made for all diseases and as a result, a semantic similarity matrix 
SS1 with 383 × 383 dimension is obtained. SS1(di, dj) represent the semantic similarity 
value between disease di and disease dj. 

2.4 Disease semantic similarity model 2 

In SS1, the contribution values of the diseases in the same layer of DAG(D) structure are 
the same. However, according to the second assumption, diseases that are less appear in 
the same layer of DAG structures than other diseases contribute more to disease D. Thus, 
in SS2, the contribution score of disease t in DAG(D) to disease D can be calculated with 
equation (5). 

number of DAGs including ( ) log
number of diseaseD

tD t  = −   
 (5) 

With the following equation, each disease’s semantic value is calculated. 

( ) ( )
D

Dt T
V D D t

∈
=  (6) 

Using the following equation, the semantic similarity score between two diseases is 
calculated. 

( )
( )

( ) ( )
1 2

1 2

1 2
1 2

( ) ( )
2 , D Dt T

D t D t
SS D D

V D V D
∩∈

+
=

+


 (7) 

2.5 Calculation of Gaussian similarity 

The Gaussian interaction profile kernel (GIP), has been proposed by Van Laarhoven et al. 
(2011), is a method that can be used to measure the similarity between two sets of 
interactions, such as the interactions between miRNA molecules and their target genes or 
the interactions between proteins and small molecules. The GIP kernel similarity measure 
is based on the idea that the similarity between two sets of interactions can be determined 
by measuring the overlap between the interactions and by considering the strength of the 
interactions. The GIP kernel similarity measure has been applied to various biological 
systems, including the analysis of miRNA-disease associations. In this context, the GIP 
kernel similarity measure can be used to identify diseases that are associated with similar 
sets of miRNA molecules. This can be useful for understanding the role of miRNA in the 
development and progression of diseases and for identifying potential therapeutic targets 
for the treatment of diseases in which miRNA expression is dysregulated. 

In this section, GIP kernel similarities were calculated for both miRNAs and diseases. 
The GIP kernel similarity scores of diseases indicated by GM(mi, mj) are calculated as 
follows: 

( ) ( ) ( )( )2, expi j m i jGM m m γ IP m IP m= − −  (8) 
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2

1

1 ( )mn
m m iim

δ IP mγ
n =

=  
 
   (9) 

Here, the parameter γm obtained by normalising the parameters controls the kernel 
bandwidth, and the number of miRNAs is indicated by parameter m. 

Similarly, the GIP kernel similarity for diseases represented by GD(di, dj) is 
calculated as follows. 

( ) ( )2, exp ( ) ( )i j d i jGD d d γ IP d IP d= − −  (10) 

Using the equation below, the parameter γd that controls the core bandwidth, can be 
computed. 

( ) 2

1

1 dn
d d iid

IP dγ δ
n =

=  
 
   (11) 

Here, n parameter is the number of diseases. 

2.6 Integration of multisource data 

We calculated the GIP kernel similarities of miRNAs and diseases, miRNA functional 
similarities (FS), and disease semantic similarities (SS1 and SS2), and integrated these 
similarities. The similarity ratios between miRNA m(i) and miRNA m(j) are calculated 
by following equation. 

( )
( )

( ), ( ) ( ) and ( ) has functional similarity
( ( ), ( ) otherwise

FS m i m j m i m j
SM

GM m i m j
= 


 (12) 

Similarly, new disease similarity scores created by integrating can be calculated as 
follows. 

( ) ( )

( )

1 ( ), ( ) 2 ( ), ( )
( ) and ( ) has semantic similarity

2
( ), ( ) otherwise

SS d i d j SS d i d j
d i d jSD

GD d i d j

 +
= 


 (13) 

2.7 Weighted k-nearest known neighbours 

WKNKN (Ezzat et al., 2017) is a classification algorithm that makes predictions based on 
the class labels of the K-nearest neighbours of a given instance. In the WKNKN 
algorithm, the weight assigned to each neighbour is based on its distance from the 
instance being classified. The farther away a neighbour is, the less weight it is given in 
the prediction. 

To classify an instance using the WKNKN algorithm, you first need to specify the 
number of neighbours (K) to consider and the distance metric to use. Then, for each 
instance in the training set, you calculate its distance to the instance being classified using 
the chosen distance metric. You then sort the training instances by distance and select the  
k-nearest neighbours. The class label of the instance being classified is then predicted 
based on the class labels of these K-nearest neighbours, with the weights being applied 
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based on the distances of the neighbours. WKNKN is a simple and effective classification 
algorithm that is often used in pattern recognition and machine learning applications. It is 
often used as a baseline method for comparison with more complex algorithms. 

Adjacency matrix A density is very sparse (2.86%), due to the 5430 experimentally 
confirmed relationships between 495 miRNAs and 383 diseases. Obviously, our aim here 
is to replace the unknown values in the adjacency matrix A with values between 0 and 1 
with the WKNKN algorithm. WKNKN algorithm is explained in detail in Figure 2. 

Figure 2 Wknkn algorithm 

  

2.8 Inductive matrix completion 

Here we used a new matrix completion-based model to predict potential relationships 
between miRNAs and diseases, called IMC (Chen et al., 2018b). The advantage of IMC 
is that it can solve matrix completion problems using small information set. In the IMC 
model, integrated miRNA similarity Sm∈Rnm×nm), integrated disease similarity (Sd∈Rnd×nd) 
and novel miRNA-disease associations (A∈Rnd×nm) calculated with WKNKN were used. 
Here, the miRNA m(i) feature vector is represented by Sm(i), and the disease d(j) feature 
vector is represented by Sd(j). Using IMC method, a new matrix Z = WHT (Z∈Rnd×nm) is 
created, where W∈Rnd×r and H∈Rnm×r. Here, the r value is a very small parameter that 
affects the convergence rate of the IMC algorithm. With the equation (14), W and H 
matrices can be calculated. 
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2 2 21 21min( , )
2 2 2

T T
Fd m FF

λ λW H φ A S WH S W H= − + +  (14) 

Here, W and H are set a random matrix, then updates W and H matrices iteratively, while 
the parameters λ1 and λ2 represent the regularisation parameters. The steps of the IMC 
algorithm are given in Figure 3. The forecasting score of disease-associated miRNAs can 
be calculated as following. 

( )( ), ( ) ( ) ( )T T
m dScore m i d j S i WH S j=  (15) 

Figure 3 IMC model constructed to predict disease-related miRNas (see online version  
for colours) 

  

3 Results 

3.1 Performance evaluation 

To evaluate the performance of a predictive model, five-fold cross-validation and  
leave-one-out cross-validation (LOOCV) techniques are commonly used.  
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Cross-validation is a technique for assessing the performance of a machine learning 
model by dividing the data into a training set and a test set, training the model on the 
training set, and evaluating its performance on the test set. This process is typically 
repeated multiple times with different partitions of the data to obtain a more robust 
estimate of the model’s performance. Although, there are several different types of  
cross-validation, five-fold cross-validation technique is the most common method of 
cross validation. In five -fold cross-validation, the data is randomly partitioned into five 
equal-sized folds. The model is trained on four folds and evaluated on the remaining fold, 
and this process is repeated five times, with each fold serving as the evaluation set once.  
five-fold cross-validation is a good choice for many applications because it strikes a 
balance between bias (due to the limited number of folds) and variance (due to the 
relatively large number of training instances used in each fold). It is also relatively quick 
to compute, compared to more thorough cross-validation methods such as leave-one-out 
cross-validation. 

LOOCV is a resampling procedure used to evaluate the performance of a machine 
learning model. It is a type of cross-validation, where the model is trained on all but one 
sample of the data and then evaluated on the left-out sample. This process is repeated 
until every sample in the data has been used as the evaluation set exactly once. The 
performance measure is then averaged over all of the evaluations. LOOCV is a very 
thorough cross-validation method because it uses the maximum amount of data for 
training and the minimum amount of data for evaluation. However, it can be 
computationally expensive because it requires training the model n times, where n is the 
size of the data. As a result, it is generally not used for large datasets. It is more 
commonly used for small datasets or when the goal is to obtain very accurate estimates of 
model performance. 

The relationship between the positive rate (TPR) and the false positive rate (FPR) 
gives us the receiver operating characteristic (ROC) curve, where the TPR is the 
proportion of positive samples that are correctly classified as positive and the FPR is the 
proportion of negative samples that are incorrectly classified as positive. 

TPTPR
TP FN

=
+

 (16) 

TNFPR
TN FP

=
+

 (17) 

where true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 
are an example that is correctly predicted as positive, correctly predicted as negative, 
incorrectly predicted as positive, and incorrectly predicted as negative, respectively. 
These terms are often used in evaluating the performance of a classification model using 
metrics such as precision, recall, and accuracy. 

The area under the curve (AUC) of the ROC curve is a measure of the overall 
performance of the method, and value ranges from 0 to 1. If AUC value is 0.5 it 
demonstrates an accidental outcome, if 1 it demonstrates excellent classifier. The ROC 
curve of our proposed method in the five-fold cross validation technique is shown in  
Figure 4, and the ROC curve in the LOOCV technique is shown in Figure 5. The 
calculated AUC values in five-fold cross validation and LOOCV are 0.8745 and 0.8786, 
respectively. 



   

 

   

   
 

   

   

 

   

    Identification of disease-related miRNAs based on WKNKN 241    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 4 Five-fold (see online version for colours) 

 

Figure 5 LOOCV (see online version for colours) 

 

We compared our study with six methods such as MCMDA (Li et al., 2017), 
RKNNMDA (Chen et al., 2017), IMCMDA (Liu et al., 2021a), GRMDA (Chen et al., 
2018e), MDHGI (Chen et al., 2018f), and SACMDA (Li et al., 2021). The AUC values 
calculated in 5-fold CV method of the six methods we compared were 0.8767, 0.7023, 
0.8109, 0.8080, 0.8240, and 0.8773, respectively, and the AUC values calculated in the 
LOOCV technique were 0.7718, 0.8221, 0.8387, 0.8272, 0.8945, and 0.8777, 
respectively. When the results are examined in detail, the AUC value calculated in the  
five-fold cross-validation technique of our method is higher than the AUC value of the 
other methods except the AUC value of the MCMDA and SACMDA methods. The AUC 
value calculated in the LOOCV technique is more successful than the other methods 
except MDHGI. 
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Figure 6 Comparison (see online version for colours) 

 

3.2 Case studies 

After predicting the potential miRNA-disease associations, we conducted case studies on 
three diseases like breast neoplasm, lung neoplasm, and lymphoma that are common 
today and cause deaths. The forecasted results have been validated by several important 
databases containing proven miRNA-disease associations such as HMDD v2.0 (Li et al., 
2014), dbDEMC (Yang et al., 2010), and miR2Disease (Jiang et al., 2009). The training 
set we used in this study contains 5430 associations between experimentally proven 
miRNA and disease and was retrieved from the database of HMDD v2.0. To use this 
obtained data as a training set, we removed associations of the related disease-associated 
miRNAs during the case study. A scoreboard of predicted miRNAs for breast cancer, 
lung cancer, and lymphoma was generated and then first 30 predicted miRNAs for the 
aforementioned diseases were validated in the databases. 

The first case study was conducted on breast cancer. A breast neoplasm is a growth or 
tumour that develops in the breast tissue. It could be benign (non-cancerous) or malignant 
(cancerous). Some common types of breast neoplasms include benign tumours like 
fibroadenomas and malignant tumours like breast cancer. Breast cancer, which is also 
seen in men, is the most common type of cancer in women. Breast cancer is the leading 
cause of cancer-related death among women. Breast cancer occurs in more than  
1.3 million people each year, and approximately 465.000 people who are diagnosed die 
(Garcia et al., 2007). 

Lung neoplasms were chosen as the second case study. A lung neoplasm is a growth 
or tumour that develops in the lung tissue. It could be benign (non-cancerous) or 
malignant (cancerous). Some common types of lung neoplasms include benign tumours 
like hamartomas and malignant tumours like lung cancer. Although lung cancer ranks 
second in women in terms of mortality rate, it ranks first in men (Garcia et al., 2007). 
Early diagnosis is very important in the success of treatment of lung cancer. 

Lymphoma was chosen for the final case study. Lymphoma is a type of cancer that 
affects the immune system. It occurs when lymphocytes, a type of white blood cell, grow 
and multiply abnormally. There are two main types of lymphoma: Hodgkin lymphoma 
and non-Hodgkin lymphoma. The incidence rate in developed countries is approximately 
1.6 times higher than in developing countries. About 200.000 Lymphomas are diagnosed 
each year around the world, and more than half of the patients die after being diagnosed 
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(Garcia et al., 2007). Lymphoma can be treated with chemotherapy, radiation therapy, 
and/or targeted therapy, and the choice of treatment depends on the type and stage of the 
cancer. 
Table 2 Breast neoplasms 

hsa-mir-21 HMDD; dbDEMC; miR2disease 
hsa-mir-145 HMDD; miR2disease 
hsa-mir-17 HMDD; dbDEMC; miR2disease 
hsa-mir-155 HMDD; miR2disease 
hsa-mir-18a HMDD; dbDEMC; miR2disease 
hsa-mir-19b HMDD; miR2disease 
hsa-mir-20a HMDD; miR2disease 
hsa-let-7a HMDD; dbDEMC; miR2disease 
hsa-mir-19a HMDD; dbDEMC; miR2disease 
hsa-mir-125b HMDD; dbDEMC; miR2disease 
hsa-mir-34a HMDD; miR2disease 
hsa-let-7e HMDD; miR2disease 
hsa-mir-223 HMDD; miR2disease 
hsa-mir-126 HMDD; miR2disease 
hsa-let-7d HMDD; miR2disease 
hsa-let-7c HMDD; dbDEMC; miR2disease 
hsa-let-7b HMDD; dbDEMC; miR2disease 
hsa-mir-143 HMDD; miR2disease 
hsa-mir-92a HMDD; dbDEMC; miR2disease 
hsa-let-7f HMDD 
hsa-let-7i HMDD; miR2disease 
hsa-mir-132 HMDD; miR2disease 
hsa-mir-125a HMDD; miR2disease 
hsa-mir-200b HMDD; dbDEMC; miR2disease 
hsa-mir-146a HMDD; miR2disease 
hsa-mir-199a HMDD; dbDEMC 
hsa-mir-141 HMDD; dbDEMC; miR2disease 
hsa-mir-106a HMDD; miR2disease 
hsa-mir-221 HMDD; miR2disease 
hsa-mir-101 HMDD; dbDEMC; miR2disease 

In conclusion, all of the top 30 potential miRNAs associated with breast cancer, lung 
cancer, and lymphoma were validated with the HMDD, dbDEMC, and miR2Disease 
databases, as seen in Table 2, Table 3, and Table 4. For example, in experimental studies, 
it has been revealed that miRNA-21 and miRNA-155 can be used as a promising 
potential biomarker for early diagnosis of breast cancer (Li et al., 2016; Cheng et al., 
2016; Lv et al., 2013). In addition, miRNA-145 inhibits breast cancer cell growth by 
targeting RTKN (Wang et al., 2009). In lung cancer, it was observed that miRNA-17 was 
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overexpressed (Lum et al., 2007) and miRNA-17 increased cell proliferation (Hayashita 
et al., 2005). Moreover, miRNA-21, miRNA-146b, and miRNA-155 have been found to 
be consistently up-regulated in lung cancer patients (Melkamu et al., 2010; Munagala et 
al., 2016). In lymphoma, it has been in many studies that miRNA-17, miRNA-18a, 
miRNA-19a, miRNA-19b and miRNA-20a are highly expressed (Zhang et al., 2009). In 
addition, downregulation of miRNA-145 has been observed in both breast cancer 
(Dalmay and Edwards, 2006), lung cancer (Dalmay and Edwards, 2006) and adult T-cell 
leukemia/lymphoma (Xia et al., 2014). 
Table 3 Lung neoplasms 

hsa-mir-21 HMDD; miR2disease 
hsa-mir-155 HMDD; miR2disease 
hsa-mir-145 HMDD; miR2disease 
hsa-mir-17 HMDD; dbDEMC; miR2disease 
hsa-mir-19b HMDD; miR2disease 
hsa-mir-20a HMDD; dbDEMC; miR2disease 
hsa-mir-18a HMDD; miR2disease 
hsa-let-7a HMDD; miR2disease 
hsa-mir-19a HMDD; miR2disease 
hsa-mir-125b HMDD; miR2disease 
hsa-mir-126 HMDD 
hsa-mir-34a HMDD; miR2disease 
hsa-let-7e HMDD; dbDEMC; miR2disease 
hsa-mir-143 HMDD; miR2disease 
hsa-let-7d HMDD; miR2disease 
hsa-mir-223 HMDD; miR2disease 
hsa-let-7c HMDD; miR2disease 
hsa-let-7b HMDD; miR2disease 
hsa-mir-146a HMDD; miR2disease 
hsa-mir-199a HMDD 
hsa-mir-132 HMDD; miR2disease 
hsa-let-7f HMDD 
hsa-mir-200b HMDD; miR2disease 
hsa-let-7i HMDD; miR2disease 
hsa-mir-125a HMDD; dbDEMC; miR2disease 
hsa-mir-92a HMDD; miR2disease 
hsa-mir-221 HMDD 
hsa-mir-16 HMDD 
hsa-mir-141 HMDD; miR2disease 
hsa-mir-146b HMDD 
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Table 4 Lymphoma 

hsa-mir-17 HMDD; miR2disease 
hsa-mir-18a HMDD; miR2disease 
hsa-mir-20a HMDD; dbDEMC; miR2disease 
hsa-mir-19b HMDD; miR2disease 
hsa-mir-19a HMDD; miR2disease 
hsa-mir-21 HMDD; dbDEMC; miR2disease 
hsa-mir-155 HMDD; dbDEMC; miR2disease 
hsa-mir-145 HMDD; dbDEMC; miR2disease 
hsa-mir-92a HMDD; miR2disease 
hsa-let-7a HMDD; dbDEMC 
hsa-mir-34a HMDD; dbDEMC; miR2disease 
hsa-mir-125b HMDD; dbDEMC 
hsa-let-7e HMDD 
hsa-let-7d HMDD 
hsa-mir-126 HMDD 
hsa-mir-223 HMDD; dbDEMC; miR2disease 
hsa-let-7b HMDD 
hsa-let-7c HMDD 
hsa-let-7f dbDEMC 
hsa-mir-200b HMDD 
hsa-let-7i dbDEMC 
hsa-mir-125a HMDD; dbDEMC 
hsa-mir-199a HMDD; miR2disease 
hsa-mir-146a HMDD; dbDEMC 
hsa-mir-92b HMDD 
hsa-mir-221 HMDD; dbDEMC 
hsa-mir-9 dbDEMC 
hsa-mir-29b HMDD; dbDEMC; miR2disease 
hsa-mir-16 HMDD 
hsa-mir-127 HMDD 

4 Discussion 

In this study, WKNKN technique and IMC method were applied to forecast possible 
disease related miRNAs. The AUC values of our proposed method in cross validation 
techniques such as five-fold and LOOCV were calculated, and obtained AUC values of 
0.8745 and 0.8786, respectively. When predicted outcomes were examined, it was seen 
that our method could be used to identify miRNAs associated with possible diseases 
without costly and time-consuming laboratory tests. The successful prediction 
performance achieved by this method is attributed to the integration of FS and GIP kernel 
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similarity of miRNAs and integration of SS and GIP kernel similarity of diseases, as well 
as the use of nearest neighbour information and IMC method to complete missing data. 
The predictions were validated with HMDD, dbDEMC, and miR2Disease databases 
resulting in 100% success rate in case studies of breast cancer, lung cancer, and 
lymphoma. In conclusion, our proposed method has shown that it could be used 
identifying possible disease related miRNAs. 

The predictive performance of our proposed method to find disease-associated 
miRNAs can be explained as follows. The method we propose uses the advantages of 
both WKNKN and IMC methods. WKNKN considers not only K-nearest neighbours,  
but also known K-nearest neighbours with interaction information. Thus, the sparse 
miRNA-disease association matrix was made denser. The IMC algorithm was used to 
predict potential miRNA-disease associations. The advantage of IMC is that it can 
complement missing values in the miRNA-disease relation matrix to improve 
performance. The method we proposed has the flexibility to combine feature vectors 
from multiple sources. Also, since IMC is a semi-supervised model, it does not rely on 
negative samples. This is an advantage for us as there are no negative samples in our 
data. However, our model also has some limitations. Because the calculation of GIP 
similarities is based on known miRNA-disease associations, it can lead to an inevitable 
bias. 
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