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Abstract: Cloud storage is the most demanded feature of cloud computing
to provide outsourced data on-demand. However, users are in a dilemma to
trust over the cloud service providers regarding whether privacy is preserved,
integrity is maintained, and security is guaranteed, towards the outsourced
data. Therefore, it requires developing an efficient auditing technique to
provide confidence upon the data present in cloud storage. We propose a
peer-to-peer (P2P) public auditing scheme to audit outsourced data using
a dynamic-hash-table (DHT) to strengthen the users’ trust, and availability
over the data. Each DHT maintains the information of outsourced data,
which helps the auditors to provide safety and integrity while auditing them.
Moreover, these auditors are organised into a structured P2P to accelerate
the auditing along with the auditor’s availability. Thus, the proposed scheme
overcomes from a single point of failure, and found to be computational less
as compared with the existing methods.
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1 Introduction

Cloud computing is accepted as the next evolution of information technology (IT)
industries with its several cutting edge facilities, such as geographical independence for
resource pooling, on-demand availability to use the cloud resources, the cost for only
accessed resources and services (Liu et al., 2011). These services are possible after
deploying centralised frameworks of the cloud (web-servers), which manage and handle
the outsourced data. A cloud service provider (CSP) is responsible for managing cloud
services, such as retrieval and maintenance of the outsourced data along with worldwide
availability. It does provide a powerful platform more than personal computer systems
with an inexpensive solution to users for storing, updating, and computing data without
any investment (Fox et al., 2009).

CSP manages all cloud services on the outsourced data without having any control
of its owners who have only faith in CSP for the correctness and privacy of their
outsourced data. Many reports reveal the several threats and privacy leakage on cloud
data through the misbehaving nature of CSP in the past (Amazon S3 Team et al., 2008;
Shah et al., 2008; Wang et al., 2009; Krebs, 2009; Nayak and Tripathy, 2018a). In
general, CSP hides the information such as deletion of the unused cloud data, and data
lost during processing, to maintain its reputation.

Moreover, a user cannot verify the outsourced data due to cryptographic primitives
on the cloud data (Juels and Kaliski, 2007), expensive input/output operations, and
requirement of massive network bandwidth. Therefore, it is impractical to verify the
vast outsourced data from the user’s end (Zhang et al., 2010). Thus, the data owners
and users require a third-party authority to perform verification on the requested data
efficiently without belief on CSP blindly.

A visual solution to verify the outsourced data in cloud computing is to place a
auditor between users and CSP. The third-party public auditor is resource capable and
considered as an expert to perform operations on the cloud data. It audits and confirms
the correctness to users for each outsourced data transaction. On the other hand, CSP
uses the public auditor for its independent arbitration purposes of its cloud-based service
platform (Shah et al., 2008). Therefore, the deployment of a public auditor within cloud
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infrastructure provides a practical and economical solution for cloud operations and
builds trust towards the remotely stored cloud data (Nayak and Tripathy, 2018b).

However, existing public auditing schemes have major issues that have to be
addressed to make them effective and efficient. First, these schemes extract user’s
information during data auditing, which leads to data leakage (Ateniese et al., 2007;
Wang et al., 2009; Shacham and Waters, 2008). Thus, public auditors must include
a mechanism to preserve data privacy, which is free from data encryption (Wang
et al., 2011). Second, these schemes should address the efficiency and scalability issues
to audit huge auditing requests from various users. An efficient multi-user auditing
mechanism can be introduced in public auditors to support batch-auditing (Yang and
Jia, 2012). Third, public auditing schemes have another issue to make an efficient
distribution of auditing workload on different auditors. These auditors are independently
assigned the auditing works, which may lead some auditors are overloaded with auditing
works and unavailable for new users. Therefore, auditing scheme includes a mechanism
to distribute works uniformly within the auditors. Another issue of auditing schemes
is to audit the dynamic updates at CSP, which is required by many cloud computing
applications. Thus, auditing schemes must support data dynamics (Wang et al., 2010;
Zhu et al., 2011).

These auditing requirements would be achieved using Merkle-hash tree (MHT) in
public auditing scheme as in Wang et al. (2010), but it suffers from computation costs
and communication costs to perform updating and verification. Further, an index-hash
table (IHT)-based public auditing has been proposed to reduce the overheads on auditors
(Zhu et al., 2011; Nayak and Tripathy, 2018b). Recently, Chen et al. (2018) proposed
an adjacency-hash table (AHT) to achieve dynamic auditing in fewer computation costs
and communication overheads. Unfortunately, these existing schemes do not address the
organising issue of public auditors, which would be an emerging challenge to handle a
bundle of auditing requests from different cloud users.

Therefore, we propose a peer-to-peer (P2P) organisation for public auditors. P2P
organisation provides an efficient solution for work distribution over different auditors
and overcomes from a single point of failure. For efficient public auditing, we use
a dynamic-hash-table (DHT) implementation in our proposed public auditing scheme.
Furthermore, we use Boneh, Lynn, and Shacham (BLS) signature technique (Boneh
et al., 2004), and bilinear map to implement batch auditing. Our contributions in this
work are summarised below:

1 We introduce a P2P chord-ring (Stoica et al., 2001) organisation of public auditors
to make them self-organise, self-distribute workload, and empowered with a
collaborative auditing approach.

2 We use the DHT data structure at each peer auditor to store cloud meta-data,
which helps to provide an effective and secure dynamic auditing solution.

3 We show our propose public auditing scheme is well suitable to perform privacy
protection, batch user-data auditing, group peer auditing, and dynamic data
auditing.

4 We formally prove and analyse that our propose scheme can mitigate different
attacks such as forge attack, replacing attack, and replay attack.
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5 Finally, we evaluated and analyse the performance of our propose protocol
regarding its computation costs, communication costs, and auditing time
consumption and found to be using less overhead as compared to the existing
schemes.

The rest of the paper starts with a brief explanation of the existing public auditing
schemes (Section 2). Problem statement and our proposed system model are mentioned
in Section 3. Section 4 explains the proposed P2P dynamic public auditing protocol,
which includes the verification of privacy protection (Subsection 4.1), dynamic updating
(Subsection 4.2), batch and group auditing (Subsection 4.3). Further, Sections 5 and
6 are formally prove the security and analyse the evaluation results of our scheme
respectively. Finally, we conclude our work in Section 7.

2 Related work

Many research works have been proposed on public auditing in cloud computing to
build an efficient and secure platform for cloud users and increase the trust towards
CSP. In this direction, Ateniese et al. (2007) defined a privacy-preserving model for
outsourced data in the untrusted cloud storage environment. They proposed a public
auditing mechanism based on RSA homomorphic linear authenticator. It requires a
linear combination of data blocks to the public auditors. Further, they proposed a
partially dynamic auditing scheme using symmetric cryptography with limited public
auditing (Ateniese et al., 2008). To make a full public auditing scheme, Wang et al.
(2009) combinations BLS-based homomorphic linear authenticator and MHT. However,
these schemes are not able to protect data privacy in the auditing process due to the
requirement of a linear combination of sampled blocks.

These traditional public auditors have a critical issue to manage huge certificates as
the number of outsourced data grows significantly. Wang et al. (2013) proposed a secure
identification-based public auditing to overcome from public-key cryptography issues.
Tan and Jia (2014) included an aggregate signature scheme in identification-based public
scheme. However, these auditing schemes suffered from key escrow. Therefore, these
auditing schemes are inappropriate for cloud-assisted mechanisms to provide batch
auditing or dynamic updates.

For dynamic data auditing, a dynamic provable data possession scheme has
been proposed using skip-list (Ateniese et al., 2007). This list helps in rank-based
authentication, which supports dynamic verification with a general pattern. Wang et al.
(2010) implemented MHT to perform dynamic auditing to support batch verification
along with data privacy. However, these schemes require high computational costs of
auditors and significant communication overheads while performing dynamic updates
and verification (Zhu et al., 2011). Therefore, Zhu et al. (2011) IHT-based public
auditing scheme (IHT-PA) to organise cloud data and its meta-data at auditors instead
of CSP. This structure reduces the overheads but not efficient in dynamic updates due
to its sequence processing on block elements, which leads to a change in the sequence
index of a few blocks. Consequently, it performs recalculation of tags at CSP with extra
computation costs and communication overheads.

Tian et al. (2015) designed a DHT, which is based on a two-dimensional data
structure to support efficient outsourced data updates and audits. This structure consists
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of an array and a linked-list, where array stores file identifier with a pointer to points
its first data block in the link-list. To improve the dynamic updates, Shen et al. (2017)
proposed a doubly link-list implementation along with a location array. This auditing
scheme supports sampling block-less and global verification. This auditing scheme
supports sampling block-less and global verification. Moreover, Chen et al. (2018)
proposed an enhanced version of dynamic auditing using an adjacency-list instead of a
link-list for maintaining block element information of the outsourced files at auditors.
Dynamic operations of these schemes are restricted due to the sequential stickiness of
file identifiers with an index of the file location array.

3 Problem statement and our system model

3.1 Problem statement

DHT-based public auditing architecture consists of data-owner/data-user, CSP, and third
party auditor (public auditor) as shown in Figure 1. Data-owner/data-user can be an
individual or an organisation which are retrieving a huge quantity of cloud data. Each
outsourced data/file includes its file identification (FID) and corresponding signature
(SIGN) as a block. Each blocks are tagged with a corresponding tag at CSP. CSP
manages a number of cloud servers to provide scalability and on-demand accessibility
of the outsourced data blocks. Public auditors keep these blocks using a DHT which is
a two-dimensional data structure as shown in Figure 1.

Each DHT maintains an index number (IN) for a file having an overlay file
identification (OID). All version information (vi) of a file is maintained by a link-list,
which has starting block point (BP) in the DHT. The auditors track the latest version
of file blocks. These information help auditors to check data integrity and reliability of
storage services of CSP in the auditing process on the behalf of the user’s data request.
Thus, users avail burden-less storage and computation services to access their outsourced
data along with data integrity from public auditors.

Figure 1 Architecture for DHT-based public auditing (see online version for colours)



Towards P2P dynamic-hash-table-based public auditing 77

Public auditors are credible but may be curious for the outsourced data. These auditors
may be unavailable due to huge data auditing requests. We consider cloud storage
services are available but CSP is not work honestly. CSP may hide some corrupted data
and try to deceive users due to self-interest. It would perform the following dishonest
activities as an attack to auditors during auditing process:

• Forge attack: CSP would forge data blocks along with their associated tags to
deceive public auditors.

• Replacing attack: CSP would try to pass the verification process to replace some
corrupted data blocks with required blocks and respective tags.

• Reply attack: CSP would use previously generated verification information to
successful completion of their verification at an auditor.

These problems motivate us to develop an efficient and a secure auditing scheme with
ensuring the auditors availability.

3.2 System model

Our proposed system model organises auditors into a P2P structure to make an efficient
and secure performance for public auditors. It manages the outsourced data information
on CSP and public auditors using a DHT to helps in integrity checking of stored cloud
data.

Figure 2 System model for outsourcing data (see online version for colours)

3.2.1 P2P organisation of public auditors

The proposed system model implements a P2P [Chord-based (Stoica et al., 2001)]
organisation of public auditors to ensure accessibility, availability and security during
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huge auditing work load of outsourced data. It uses SHA1 (Karger et al., 1997) hash
function to generate an overlay identification (m-bit) using physical identification of
peers (auditors). It organises a ring structure through zero to 2m−1 address space
using modulo 2m. Figure 2 shows A1, A3, and A6 overlay ids (OIDs) for auditors
having physical ids 1, 3 and 6 respectively, where m is 3-bit. This organisation makes
an efficient environment for each auditor to provide self-organising, load-balancing,
accessibility of shared resources within log(n) searching cost, where n is the number of
overlay members.

3.2.2 DHT-based outsourced information management

Each P2P auditor maintains a DHT to manage the outsourced information for ensuring
efficient and secure auditing for cloud data. DHT tracks two types of basic information
(file and its block) using two-dimensional data structure. As shown in Figure 2, each
file with an OID (OIDi) is store at respective auditor’s (Ai) DHT as an array data
structure, which has its IN (INi) and block pointer (BPi). (BPi) points the first block
of OIDi in DHT, similar as a link-list data structure.

Each node of DHT link-list refers as a block (bij) of a file, where i and j represent
as jth block elements of ith file. Each block element keeps four information, they are
current version number, issued time stamp (TSij), root overlay id (RIDi) and the
pointer of next issued block element as shown in Figure 2. These DHT information are
used to audit n number of outsourced files bi (∈ {1, n}) at CSP. DHT provides basic
operations (insert, search, modify, and delete) of file and blocks as per their respective
data structure.

4 The proposed P2P auditing scheme

This section presents our proposed P2P public auditing scheme based on DHT to provide
an efficient and a secure auditing environment for users.

4.1 Dynamic verification to ensure privacy preserving

The proposed dynamic verification uses two multiplicative cyclic groups G1 and G2,
which are a group of large prime order p. These groups are mapped using a bi-linear
map e (G1 ×G1 → G2). SHA-1 H ({0, 1}∗ → G1) is used to hash n blocks or chunks
(b1, b2, ..., bn) of a file before inserting into cloud server. These chunks are used
to generate a root overlay id (ROI) at each data owner to provide the verification
meta-data at auditors. The proposed verification process performs in two phases: setup
phase and verification phase. The setup phase consists of four steps as follows.

Step 1 Key initialisation: Users generates two set of keys SK (= {s, sk}) and PK
(= {k, l, m, pk}), where s (∈ Z∗

P) is a random number, (sk, pk) is a key pair
for signature, k and m are randomly selected element of generator G1, and l
computed as ks.

Step 2 Data information: Each file chunks (b1, b2, ..., bn) of a file (FIDi) is hashed
to generate m-bit chunk keys. Finally, these keys are used to generate an
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overlay root id (RIDi) of m-bit, as shown in Figure 3. Further, a root
version identifier (RV I) is generated to identify the version id of the
generated RIDi as:

RV I = {(FIDi, TSi, RIDi)|1 ≤ i ≤ n} (1)

where TSi is the issued time stamp of RV I . Data owner sends these data
infromation (H(FIDi), RV I) to P2P auditors. An appropriate auditor stores
these information into its DHT table.

Step 3 Signature generation: A signature σi is generated for each block bi using
data owner’s public key m as follows:

σi = H(FIDi, TSi, RIDi)m
(ri+H(FIDi,TSi,RIDi)). (2)

To ensure integrity of FIDi, data owner generates a file tag Γ
(= OIDi||SIGN(sk, FIDi)), where SIGN(sk, FIDi) represents a
signature for FIDi using the owner’s private key sk. Finally, data owner
uploads FIDi, σi, and Γ to cloud storage and clean its local storage space.

Step 4 Tag generation: CSP generates a tag TGi for each block bi (1 ≤ i ≤ n)
using the bilinear map e after receiving outsourced block signature σi as
follows:

TGi = e(σi, l). (3)

Figure 3 Generation of a root overlay id of a file using its chunks

Our proposed verification phase consists of four steps as follows:

Step 1 File integrity check: The verification starts at P2P auditor (Ax) after
receiving an auditing request of a file tag Γ from a data user. Ax extracts the
file id from SIGN(sk, FIDi), and verifies H(FIDi)

?
= OIDi.

Unsuccessful result shows the requested file has been modified, hence the
process can be terminated. Otherwise, Ax forwards the request to a P2P
auditor Ai which has closest OID of H(FIDi). Ai confirms metadata of
H(FIDi) in its DHT table, and goes to step 2; otherwise, report a file
modification error to data requester.
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Step 2 Challenge: Auditor Ai generates a challenge chal = (OIDX =
{odixi|1 ≤ i ≤ k, k ≤ n}, RN = {rni|i ∈ OIDX}, RM) and sends to CSP,
where OIDX = {odixi|1 ≤ i ≤ k} is a random set file chunks to be
checked, RN = {rni|i ∈ OIDX} is a set of random numbers (∈ Z∗

P), and
RM is a random masking computed as RM = lr, where r is a random
number (∈ Z∗

P).

Step 3 Verification proof: After receiving the challenge, CSP has to produce a
challenge proof for data correctness. This process consists tag proof (TGP )
and data proof (DP ). In tag proof, CSP must be generate the aggregated
authenticate of each corresponding tag of OIDX , i.e.,

TGP =
∏

i∈OIDX

θRNi
i . (4)

For data proof, CSP computes linear combination (LC) of the required
chunks for chal, and then λ as follows:

LC =
∑

i∈OIDX

RNi.H(bi). (5)

and

λ = e(m,RM)LC (6)

Finally, CSP sends these information (TGP, λ) to Ai as a response proof of
the given challenge (chal).

Step 4 Proof check: After receiving the response from CSP, auditor Ai computes
hash value (HV ) of all blocks of the challenge and combined them as:

HV =
∏

i∈OIDX

H((FIDi, TSi, RIDi))
RNi . (7)

Finally, Ai checks the received proof using following equation (8).

λ.e

(
HV.m

∑
i∈OIDX

RNi.H(FIDi,TSi,RIDi)

, RM

)
?
= TGP r. (8)

Ai replies to the data requester about the correctness of data request as per
the equation outputs. The correctness of the equation (8) is demonstrated as
follows:

λ.e

(
HV.m

∑
i∈OIDX

RNi.H(FIDi,TSi,RIDi)

, RM

)
= e(m,RM)

∑
i∈OIDX

RNi.H(bi)

.e

( ∏
i∈OIDX

H((FIDi, TSi, RIDi))
RNi

.m

∑
i∈OIDX

RNi.H(FIDi,TSi,RIDi)

, RM

)



Towards P2P dynamic-hash-table-based public auditing 81

= e

(
m

∑
i∈OIDX

RNi.H(bi)

, RM

)
.e

( ∏
i∈OIDX

H((FIDi, TSi, RIDi))
RNi

.m

∑
i∈OIDX

RNi.H(FIDi,TSi,RIDi)

, RM

)
= e

( ∏
i∈OIDX

H((FIDi, TSi, RIDi))
RNi

.m

∑
i∈OIDX

RNi.(H(bi)+H(FIDi,TSi,RIDi))

, kr−s

)
= e

( ∏
i∈OIDX

(H((FIDi, TSi, RIDi))

.m

∑
i∈OIDX

RNi.(bi+H(FIDi,TSi,RIDi))
)RNi

, kr−s

)

= e

( ∏
i∈OIDX

σRNi
i , kr−s

)

= e

( ∏
i∈OIDX

σRNi
i , ks

)r

= e

( ∏
i∈OIDX

σRNi
i , l

)r

=
∏

i∈OIDX

TGRNi.r
i

= TGP r.

4.2 Dynamic updating

The basic idea of dynamic updating such as block modification (Mb), block insertion
(Ib), and block deletion (Db) in our scheme is based on P2P Chord protocol. In this,
each files are hashed and placed at an appropriate P2P audior’s (Ai) DHT table. It helps
to distribute the auditing workload among peer auditors. block is update at an auditor’s
DHT which has closest OID as file of the block has (FIDi).

4.2.1 Block modification

To modify a outsourced data block (bi) of the file (FIDi), user generates a new
root id (RID′

i) for modify/new data block (b′i) and sends a modification request
(FIDi,Mb, TS

′
i, RID′

i) to an auditor (Ai). After receiving the modification request,
(Ai) computes H(FIDi) and finds the corresponding index at its DHT table. It replaces
TS′

i and RID′
i accordingly in a link-list entries of the DHT. To update CSP, user

computes signature (σ′
i) of the modified block (b′i) using equation (2) and sends a modify

request (FIDi,Mb, bi, b
′
i, σ

′
i) to CSP. For each modification request, CSP generates a

new tag (tg′i) for modified block (b′i) using equation (3) and updates its database.
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4.2.2 Block insertion

To insert a block (bj) of a file (FIDj), a root value of FIDj (RID”j) is generated
at user. User sends a block insertion request (FIDj , Ib, bj , TSj , RIDj) to an auditor
(Aj). Aj inserts the new block information in the link-list of its DHT table. User sends
an insert message (FIDi, Ib, bi, b′i, σ′

i) of bj to CSP after computing a corresponding
signature (σj) applying equation (2). CSP inserts the information in its database after
generating a tag value (tgj) with the help of received insertion information using
equation (3).

4.2.3 Block deletion

To delete a kth block (bk) of a file FIDk, user generates deletion request (FIDk, Db,
kth) and sends to an auditor Ak. Ak computes the hash of FIDk and deletes the kth

block in the link-list of its DHT table. To update the deletion of block bk at CSP, user
sends a block delete information (FIDk,Db) to CSP. CSP computes and store a new
file version and its tag of FIDk.

4.3 Verification of batch and group peer auditing

Our proposed auditing scheme combines all challenges of the requested data at each P2P
auditor into a batch to send at CSP. CSP generates verification proof for each challenge
(chal) and aggregate them using the aggregate BLS signature method (Boneh et al.,
2003).

Let n number of P2P auditors receive auditing requests from k (on average) number
of different users. An auditor (Ax, 1 ≤ x ≤ n) combines all the generated chal (n.k)
and sends to CSP. CSP generates tag proof (TGPi) and data proof (λi) for each chali,
where i = 1, 2, 3, ..., n.k. These generated proofs TGPi and λi are aggregated into
TGPB [equation (9)] and λB [equation (10)] respectively.

TGPB =
n.k∏
i=1

TGPi (9)

λB =

n.k∏
i=1

λi (10)

Finally, CSP sends (TGPi and λi) to Ai as a response of the challenges. Ai computes
hash value (HVi, 1 ≤ i ≤ k) for all users and requests other members to send their
respective hash values. Ai generates a batch hash value (HVB) after combining the
all challenge hash values [equation (11)] and verify the received proof by checking
equation (12). Finally, Ai responses the verification result to respective member peers.

HVB =
n.k∏
i=1

∏
j∈OIDX

H((FIDi,j , TSi,j , RIDi,j))
RNi,j . (11)

λB .

n.k∏
i=1

e

(
HVB .m

∑
j∈OIDX

RNi,j .H(FIDi,j ,TSi,j ,RIDi,j)

i , RMi

)
?
= TGP r

B . (12)
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The correction of equation (12) is demonstrated below.

λB .λB .

n.k∏
i=1

e

(
HVB .m

∑
j∈OIDX

RNi,j .H(FIDi,j ,TSi,j ,RIDi,j)

i , RMi

)

= λB .

n.k∏
i=1

e(m,RMi)

∑
j∈OIDX

RNi,j .H(bi,j)

.

n.k∏
i=1

e

 ∏
j∈OIDX

H((FIDi,j ,

TSi,j , RIDi,j))
RNi,j .m

∑
i∈OIDX

RNi,j .H(FIDi,j ,TSi,j ,RIDi,j)

i , RMi

)

=
n.k∏
i=1

e

(
m

∑
j∈OIDX

RNi,j .H(bi,j)

, RMi

)
.
n.k∏
i=1

e

 ∏
j∈OIDX

H((FIDi,j ,

TSi,j , RIDi,j))
RNi,j .m

∑
j∈OIDX

RNi,j .H(FIDi,j ,TSi,j ,RIDi,j)

i , RMi

)

=
n.k∏
i=1

e

 ∏
j∈OIDX

H((FIDi,j , TSi,j , RIDi,j))
RNi,j

.m

∑
j∈OIDX

RNi,j .(H(bi,j)+H(FIDi,j ,TSi,j ,RIDi,j))

i , kr−s

)

=
n.k∏
i=1

e

 ∏
j∈OIDX

(H((FIDi,j , TSi,j , RIDi,j))

.m

∑
j∈OIDX

RNi,j .(bi,j+H(FIDi,j ,TSi,j ,RIDi,j))

i

)RNi,j

, kr−s


=

n.k∏
i=1

e

 ∏
j∈OIDX

σRNi
i,j , kr−s


= e

( ∏
i∈OIDX

σRNi
i , ks

)r

=
n.k∏
i=1

e

 ∏
j∈OIDX

σRNi
i , l

r

=
n.k∏
i=1

 ∏
j∈OIDX

TG
RNi,j .r
i


=

n.k∏
i=1

TGP r
i

= TGP r
B.
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5 Security analysis

Our proposed auditing mechanism is resistant against the following attacks.

5.1 Forge attack

We design a security game theory (based on Shacham and Waters, 2008) to prove the
resistance against forge attack. Auditor (Ai) sends a chal = (OIDX = {odixi|1 ≤ i ≤
k, k ≤ n}, RN = {rni|i ∈ OIDX}, RM) to CSP. CSP should response (TGP, λ) for
correct auditing of file FIDi using equation (8) at Ai. However, the CSP generates an
incorrect response (TGP, λ′) using incorrect data blocks (b′k|1 ≤ k ≤ c, c ≤ n), where
λ = e(m,RM)B

′ , B′ =
∑

k∈OIDX

(ζk), and ζk = RNk.H(b′i). The forge generated proof

sends to Ai for checking. If this proof is passed by Ai, the CSP wins the game and
lunches forge attack successfully; otherwise it fails.

Let CSP wins the game at auditor Ai, i.e., from equation (8), we have

e(m,RM)λ
′
.e

(
HV.m

∑
i∈OIDX

RNi.H(FIDi,TSi,RIDi)

, RM

)
= TGP r. (13)

Moreover, the correct proof is (TGP, λ), then we have

e(m,RM)λ.e

(
HV.m

∑
i∈OIDX

RNi.H(FIDi,TSi,RIDi)

, RM

)
= TGP r. (14)

To verify successfully at Ai, the following equation (15) should be hold.

m

∑
i∈OIDX

ζi
= m

∑
i∈OIDX

λ

(15)

In ζi computation, CSP uses forge data (b′i) which produces different hash value. Thus,
the above equation (15) can not hold and CSP lost the game.

5.2 Replacing attack

The replacing-attack game is defined as follows: auditor (Ai) sends a chal = (OIDX =
{odixi|1 ≤ i ≤ c, c ≤ n}, RN = {rni|i ∈ OIDX}, RM) to CSP. To response back,
CSP generates an auditing proof (TGP ′, λ′) after replacing the jth index block bj to
the kth index block bk, where (bj , bk ∈ OIDX). CSP launches a replacing attack in the
case of passing the generated proof (TGP ′, λ′) at auditor Ai; otherwise, it fails.

As per bi-linear map properties, left side of the equation (8) can be re-written as:

λ′.e

(
HV.m

∑
i∈OIDX

RNi.H(FIDi,TSi,RIDi)

, RM

)
= e(m,RM)

∑
i,j∈OIDX

(RNi.H(bi))+(RNj .H(bk))

.e

( ∏
i∈OIDX

H((FIDi, TSi, RIDi))
RNi .m

∑
i∈OIDX

RNi.H(FIDi,TSi,RIDi)

, RM

)
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= e

(
m

∑
i,j∈OIDX

(RNi.ri)+(RNj .rk)

, RM

)
.e

( ∏
i∈OIDX

H((FIDi, TSi, RIDi))
RNi .m

∑
i∈OIDX

RNi.H(FIDi,TSi,RIDi)

, RM

)

= e

( ∏
i∈OIDX

H((FIDi, TSi, RIDi))
RNi

.m

∑
i,j∈OIDX

RNi(ri+RV Ii)+RNj(rk+RV Ij)

, RM

)
Next, the right side of equation (8) can be re-written as:

(TGP ′)rm =
∏

i∈OIDX

θRNi.r
i .θ

RNj .r
k

= e

( ∏
i∈OIDX

σRNi
i .σ

RNj

k , RM

)

= e

( ∏
i∈OIDX

(
H(FIDi, TSi, RIDi).m

(ri+H(FIDi,TSi,RIDi)
)RNi

.
∏

i∈OIDX

(
H(FIDk, TSk, RIDk).m

(rk+H(FIDk,TSk,RIDk)
)RNj

, RM

)

= e

( ∏
i∈OIDX

H((FIDi, TSi, RIDi))
RNi

.m

∑
i,j∈OIDX

RNi(ri+RV Ii)+RNj(rk+RV Ij)

, RM

)
.

A successful verification at Ai of the replacing-attack must has RV Ii equals to RV Ik,
i.e., H(FIDi, TSi, RIDi) = H(FIDk, TSk, RIDk). The computation of RID is based
on the sequence of data blocks as discussed earlier (Figure 3). Therefore, root id of
replacing block index can be identify in our proposed scheme.

5.3 Replay attack

The replay-attack game is defined as follows: auditor (Ai) sends a chal = (OIDX =
{odixi|1 ≤ i ≤ c, c ≤ n}, RN = {rni|i ∈ OIDX}, RM) to CSP. CSP generates
information (TGP ′, λ′) after substituting a kth block information (bk) with previously
generated kth block information (bk∗) as a proof of the received chal. The replay
attack is launched in the case of passing the generated proof (TGP ′, λ′) at auditor Ai;
otherwise, it fails.

To pass a verification proof ((TGP ′, λ′)) using old information at Ai, RV ICurrent

root version id using current time stamp of FIDi is equal to RV IOld. It is not possible
to generate in our P2P-based DHT public auditing protocol due to replacement of a data
chunk can change the root overlay id (RID).
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6 Performance analysis

6.1 Computation costs

We chose the Amazon cloud (CSP) to measure the effectiveness of our P2P dynamic
auditing scheme on the computation costs during the accomplishment of auditing
requests. The configuration of this cloud includes a micro instance elastic-compute cloud
(EC2), a variable EC2 compute unit, one CPU having a clock speed of 2.5 GHz, an
Intel Xenon Family (physical processor), and a cloud-storage-server with 1 GB memory.
We chose five personal computers, and each machine has an Intel Core i5 processor
(3.2 GHz) and 4 GB RAM as P2P public auditors. Each P2P auditors maintains a
DHT table to maintain files meta-data. We implement the schemes with the help of the
pairing-based cryptography (PBC) library (version – 0.5.14) using the C programming
language. This library helps to achieve the cryptographic operations with type A pairing
parameters.

Figure 4 depicts a result of average computation costs of per auditing work of our
scheme and an existing scheme (Chen et al., 2018), where each 10 K files having
50 K blocks. Initially, our scheme has more computation cost, but our scheme performs
outstanding as auditing workload increases due to a batch and group auditing with the
help of peer auditors.

Figure 4 Comparison of average computation cost of per auditing work from experimental
results (see online version for colours)

6.2 Communication costs

We use a theoretical network trafficking model of DHT-based cellular network as
defined in Tetarave et al. (2018) to compute the overall bandwidth consumption to
audit the outsourced data in cloud computing. This model uses Cw and Cf parameters
for wireless and fixed communication cost respectively, where Cf = k.Cw (k ∈ {1,
2, 3, ...}). In our experiments, we consider Cw cost to communicate from DO/DU to
CSP/auditor, whereas Cf cost within CSP and public auditors. The experiment from
this model has been implemented, and its performance evaluation is carried out using
MATLAB R2016a on a PC with Intel Core i7 processor with 8 GB of main memory.
The comparisons are based on the retrieval of 100 K file chunks among 1 K cloud users.
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We consider the number of public auditors is 10, and the number would be increased
as per simulation.

Figure 5 Comparison of communication cost as the number of data user increases
(see online version for colours)

Figure 6 Comparison of communication cost as the number of public auditor increases
(see online version for colours)

In traditional auditing schemes, (N.F.c.k.An.(3Cw + 2Cf )) communication cost
(TtradAudit) is required for auditing F outsourced files with c number of chunks per
file, where N and An are the total number of DO/DU and public auditors respectively.
In this, each outsourced file chunks (F.c) have been stored, verified, and accessed.
On the other hand, few chunks (ϵ) of a file are needed to verify in our proposed
DHT-based auditing scheme. In this, request for the verification of file chunks ϵ is
carried out from DU to the public auditor. After receiving the request, the target DHT
auditor communicates with CSP. Finally, CSP provides the parameters for preserving
the privacy of the file. Therefore, three times of fixed communication cost (Cf ) are
required for data verification, while two times of wireless cost Cw are necessary for
data outsourcing and downloading. Thus, the total communication cost in our proposed
scheme would be

TdhtAudit = N.F.c.An.k.2Cw +N.ϵ.log(An).3Cf (16)
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In Figure 5, TdhtAudit consumes significantly less bandwidth using expensive radio
signal. Figure 6 shows the effect of auditors after organising into DHT ring. As the
auditors increase, our scheme audits the requested files to distribute the auditing load
efficiently.

7 Conclusions

This work presents a new public auditing scheme for efficient and secure cloud storage
services. We introduced a P2P mechanism with a DHT data structure to the efficient
management of meta-data for each outsourced file. Formal verification of different
attacks proves our proposed auditing mechanism mitigates them. Using P2P consistent
hash properties and DHT structural benefits make our scheme fewer computation costs
and communication overheads from the existing works, which are confirmed through
experiments and simulations.
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