Complex eigenvalue analysis and dynamic transient analysis in predicting disc brake squeal
by Abd Rahim AbuBakar, Huajiang Ouyang
International Journal of Vehicle Noise and Vibration (IJVNV), Vol. 2, No. 2, 2006

Abstract: There are typically two different methodologies that can be used to predict squeal in a disc brake, i.e., complex eigenvalue analysis and dynamic transient analysis. The positive real parts of complex eigenvalues indicate the degree of instability of the disc brake and are thought to associate with squeal occurrence or noise intensity. On the other hand, instability in the disc brake can be identified as an initially divergent vibration response using transient analysis. From the literature it appears that the two approaches were performed separately, and their correlation was not much investigated. In addition, there is more than one way of dealing the frictional contact in a disc brake. This paper explores a proper way of conducting both types of analyses and investigates the correlation between them for a large degree-of-freedom disc brake model. A detailed three-dimensional finite element model of a real disc brake is developed. Three different contact regimes are examined in order to assess the best correlation between the two methodologies.

Online publication date: Thu, 05-Oct-2006

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Noise and Vibration (IJVNV):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com