Forthcoming articles


International Journal of Operational Research


These articles have been peer-reviewed and accepted for publication in IJOR, but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.


Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.


Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.


Articles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.


Register for our alerting service, which notifies you by email when new issues of IJOR are published online.


We also offer RSS feeds which provide timely updates of tables of contents, newly published articles and calls for papers.


International Journal of Operational Research (206 papers in press)


Regular Issues


  • LR-optimal solution of nonlinear optimization problem with varying parameters   Order a copy of this article
    by Mrinal Jana, Geetanjali Panda 
    Abstract: In this paper a nonlinear optimization problem is studied in uncertain environment. The objective function and constraints of this problem are interval valued functions. Solution of the problem is defined with respect to $LR$-partial order relation, andrnmethodology is developed to derive these solutions. The proposed methodology is illustrated through numerical examples. A possible application of the optimization model in finance is described at the end.
    Keywords: Nonlinear optimization problem; Interval analysis; Interval valued function; Partial order relation; Decision making problem.

  • An inventory model of deteriorating items with a credit period based new demand function in a finite time horizon.   Order a copy of this article
    by Ateka Banu, Shyamal Kumar Mondal 
    Abstract: In today's competitive market, the trade credit plays an important role to in-rncrease demands of customers/buyers. Here, we consider a two-level trade credit policy in which a delay in payment is offered by supplier to retailer and also an another delay in payment is offered by retailer to his/her all customers. In this model, it is proposed that the demand function is dependent on the length of the customer's credit period and also the duration of offering the credit period. The purpose of this model is to establish a deterministic EOQ model of deteriorating items for the retailer to maximize the total profit and the number of replenishment cycle in finite time horizon. We develop an algorithm to find out the optimal solutions. Also the model is explained with the help of numerical examples and sensitivity analysis are given to illustrate the features of the proposed model with respect to some parameters.
    Keywords: Inventory; Deterioration; Two-level credit financing; Credit period dependent demand; Inflation.

  • An EOQ Model for Deteriorative items with Constant and Linear and quadratic Holding cost and shortages- a comparative study   Order a copy of this article
    by Selvaraju Palanisamy 
    Abstract: In the classical inventory model the holding cost was assumed to be constant. However, in reality holding cost may not always be constant. The holding cost may be time dependent. In this paper, a production inventory model with deteriorating items with constant, linear and quadratic holding cost is considered and also a comparative study is carried out between constant holding cost and time dependent (linear and quadratic) holding costs. Three models are developed. In three models, the optimum time and total cost are derived when the holding cost is (i) constant, (ii) linear; (iii) quadratic. A mathematical model is developed for each model and the optimal production lot size which minimizes the total cost is derived. The optimal solution is derived and an illustrative example is provided. The validation of result in this model was coded in Microsoft Visual Basic 6.0
    Keywords: Inventory; Deteriorating; linear; quadratic; holding cost; demand and production.

  • The Distribution Free Newsboy Problem with Partial Information   Order a copy of this article
    by Krishna Sundar, K. Ravikumar, Siddharth Mahajan 
    Abstract: We present a new ordering rule for the newsboy problem where besides the mean and variance of demand, the probability that the demand assumes the value zero is known. We derive a lower bound for the expected profit over the set of distributions with given parameters and construct a distribution which achieves the bound. We apply our analysis to an M/G/1 queue with server vacations, which is the base model for many production-inventory systems.
    Keywords: Distribution free Newsboy problem; Inventory Control; M/G/1 queue; Server vacations.

    by Juan Jaramillo, Alan McKendall 
    Abstract: Designing efficient machine layouts is key to ensure profitability in manufacturing environments. The major decisions in designing machine layouts are: the selection of machines (including machine replicas); the assigning of machines to the plant floor; the selection of production mix (i.e., products to be produced); and the assigning of products to machines (i.e., product flows). The Generalized MAchine Layout Problem (GMALP) integrates these factors under a single problem. This works presents a memetic algorithm for the GMALP. The memetic algorithm takes advantage of the diversification strengths of the genetic algorithm combined with the intensification abilities of tabu search. Results obtained with the memetic algorithm compares favorably with results presented in the literature.
    Keywords: memetic algorithm; GMALP; generalized machine layout problem; MLP; machine layout Problem; evolutionary algorithms; tabu search; TS.

  • Different hydraulic analysis conditions for sewer network design optimization problem using three different evolutionary algorithms   Order a copy of this article
    by Ramtin Moeini 
    Abstract: In this paper, the efficiency of considering the constant and varying Manning coefficient for a hydraulic analysis model on the optimal solution of sewer network design optimization problem is studied. To solve sewer network design optimization problem, here, different formulations are proposed using genetic algorithm, discreet and continues ant colony optimization algorithms. In all proposed formulations, the nodal cover depths of the sewer network are taken as decision variables of the problem. Furthermore, for both ant-based algorithms two different formulations are proposed using unconstrained and constrained versions of these algorithms. The constrained versions of these algorithms are proposed here for the explicit satisfaction of the minimum pipe slope constraint leading to smaller search space. Two benchmark test examples are solved here using proposed formulations and the results are presented and compared with other available results. Comparison of the results shows the superiority of considering varying Manning coefficient condition for hydraulic analysis model. Furthermore, the results show the superiority of continues ant colony optimization algorithm and especially the constrained version of it to optimally solve the sewer network design optimization problem.
    Keywords: Manning coefficient; hydraulic analysis model; sewer network; Genetic Algorithm; Discrete Ant Colony Optimization Algorithm; Continuous Ant Colony Optimization Algorithm.

  • Supply chain delivery performance improvement for several delivery time distributions   Order a copy of this article
    by Maxim Bushuev, Alfred Guiffrida, Tatiana Rudchenko 
    Abstract: This paper investigates strategies for improving supply chain delivery performance for delivery time distributions with closed forms of cumulative density functions (uniform, exponential, and logistic). Delivery performance is measured using a cost based analytical model which evaluates the expected cost for early and late delivery. The effect of changes to the parameters of the delivery time distributions on the expected cost is explored. Strategies for improving delivery performance utilizing the mean and variance of the delivery time distributions are also studied when a supplier uses an optimally positioned delivery window to minimize the expected penalty cost. Theoretical and managerial implications of the findings are discussed.
    Keywords: Supply Chain Management; Delivery Performance; Continuous Improvement

    by Vignesh Perumal, Srinivasan S, Maragathasundari S 
    Abstract: This paper deals with the steady state analysis of a single server batch arrival queueing system with three stages of compulsory service. An added assumption of fourth stage optional service is considered. After service completion the server may take a vacation. In this model, the vacation is of fixed duration. Busy server may break down at any instant. It is followed by a repair process. Service time, vacation time and repair time follows general distribution. The steady state probability generating function for the system is obtained by using supplementary variable method. System performance measures are also determined. Some special cases of the model are also discussed. Model is justified by means of numerical illustration.
    Keywords: Stages of service,Optional service,Feedback service,Deterministic Vacations,Breakdown and Repair process

  • A case of unconstrained multiple-factor optimization with unknown function in textile industry   Order a copy of this article
    by Qidong Cao, Thomas Griffin, Xiaoming Li 
    Abstract: We applied an extremal experiment in a paper machine clothing factory to solve a quality problem caused by automatic bobbin-changers. The experimental study maximized the breaking strength of weld point and therefore led to a substantial gain in the gross profit. Questions answered in the extremal experiment of this study are useful to other practitioners who can apply the extremal experiment to their industries where an unconstrained multiple-factor optimization model with unknown functions between the dependent variable and the factors is employed.
    Keywords: Extremal Experiment; Sequential Experiments; Steepest Ascent Method; Parameter Optimization; Factorial Design

  • An Inventory Model for imperfect production system with Rework and shortages   Order a copy of this article
    by Sanjai M. 
    Abstract: This paper considers a production inventory model with planned backorders for a single product. The product is manufactured in a single stage manufacturing system. The manufacturing system generates imperfect quality products. All these defective products are reworked in the same cycle. This paper develops two inventory models for two operational policies. The first policy covers the case that the rework is done and the shortages are not permitted. The second policy covers the case that the rework is done and the shortages are permitted. The generation of defective items during most practical production processes is almost inevitable. These imperfect quality items can sometimes be reworked and repaired, hence the overall production costs can be reduced significantly. To achieve this objective, a mathematical model is developed. In particular, the optimal production lot size which minimizes the total cost is derived. This model is developed for deriving the necessary and sufficient conditions for having a unique solution. An illustrative example is provided and validated. The validation of result in this model was coded in Microsoft Visual Basic 6.0.
    Keywords: EPQ, Defective Items, Cycle time, Rework, Shortages, Demand and Production.

  • Modeling a bi-objective airport gate scheduling with controllable processing time using Hybrid NSGA-II and VNS algorithm   Order a copy of this article
    by Sanaz Khatibi, Morteza Khakzar Bafruei, Morteza Rahmani 
    Abstract: While almost all studies on airport gate scheduling the processing time was considered fixed, in this research, we address a bi-objective model in more realistic situation that airport gate processing time is controllable with non-homogeneous gate. It is assumed that the possible compression/expansion processing time of a flight can be continuously controlled, i.e. it can be any number in a given interval. The aim of this study is to simultaneously (1) minimize total cost of tardiness, earliness, delay as well as compression and expansion costs of job processing time and (2) minimize the passengers overcrowding on gate. In this study, a mixed-integer programming model is proposed. For solving such bi-objective problem, two multi-objective meta-heuristic algorithms i.e. NSGA-II and hybrid NSGA-II and VNS are applied. In order to avoid the solution to be trapped in local optimum, VNS is used instead of mutation operator in NSGA-II. For calibrating the parameter of the algorithms Taguchi method is used and the optimal levels of the algorithms performance are selected. The algorithms are tested with real life data from Mehrabad International Airport for medium size problems. Computational experiments reveal that hybrid NSGA-II and VNS generate better Pareto-optimal solution as compared to NSGA-II.
    Keywords: Gate scheduling problem, Multi-objective decision making, NSGA-II, VNS, Hybrid meta-heuristic, Controllable processing times

  • Analysis of Simulated Annealing Cooling Schemas for Design of Optimal Flexible Layout under Uncertain Dynamic Product Demand   Order a copy of this article
    by Akash Tayal, Surya Prakash Singh 
    Abstract: Manufacturing facilities are subjected to many uncertainties such as variability in demand, queuing delays, variable task times, rejects and machine breakdown. These volatilities have a large impact on leap time, inventory cost and delivery performance of a manufacturing unit. To operate efficiently the manufacturing facilities should adapt to these variations. The paper explores the way uncertainties are addressed in designing of flexible optimal layout. Such facility layout problem is known as Stochastic Dynamic Facility Layout Problem (SDFLP). SDFLP is an NP-hard combinatorial optimization problem, which means the time taken to solve increases exponentially with problem size. To solve SDFLP, the paper presents an adaptation of Simulated Annealing (SA) meta-heuristic. Various SA cooling schemas are discussed, computed and evaluated for generating the optimal flexible layout. An optimal layout is one that minimizes the distance travelled by materials taking into account uncertain product demand (material handling cost). A computer based tool was developed and analysis was conducted on small to large size problem set. The results showed that SA with exponential cooling schedule provides better solution in terms of layout efficiency and gave better solution as compared to literature.
    Keywords: Facility layout; stochastic dynamic facility layout; simulated annealing; cooling schedule; meta-heuristic; modified simulated annealing

  • An EPQ model of deteriorating substitute items under trade credit policy   Order a copy of this article
    by Uttam Kumar Bera 
    Abstract: This study presents a multi item production control inventory model of deteriorating items where items are substitute in nature. Here demand is taken as stock dependent. The law of demand suggests that demand for a product is proportionally affected by its own stock. If the products stock rise demand rises or the stock falls demand falls. Moreover, demand for one good also depends on the stock of other related goods. The standard economic textbooks indicate that related products for a product include complement as well as substitute products. Two goods are substitutes (or rival) if one can be used in place of the other one. Many products that are on the market today have substitutes. For example, bread and crackers, stocks and bonds, two different brands of soft drinks or water, domestic and foreign cars, oats and corns, natural gas and electricity or two different brands of toothpaste are substitutes. The change in a substitute products stock level could alter quantity demanded for another good. When customers evaluate two substitute products for purchase, they will pay attention to characteristics of both products, including its prices and stocks, and make purchasing decisions. For that reason, customer could determine the production decisions for a product while considering its substitutes stock level in order to attain an optimal profit level. Supplier offers trade credit period to the retailer and the retailer also offers trade credit to the supplier. The whole profit is calculated with retailers point of view. In this model we take budget as crisp, fuzzy, random, fuzzy random and fuzzy rough. In different scenarios, we find the relevant profit of the retailer. The nonlinear optimization method Generalized Reduced Gradient (GRG) method and LINGO (13.0) is used to find the optimal solutions and the corresponding maximum profits for the different sets of given numerical data. Some sensitivity analyses are made and presented graphically.
    Keywords: EPQ model, Substitute item, Uncertain budget.

  • Mean-Variance Investment Strategy with Proportional Transaction Costs and Withdrawal Process for a Defined Contribution Pension Scheme   Order a copy of this article
    by Charles Nkeki 
    Abstract: In this paper, we consider an extension of the Markowitz portfolio and investment problem in which transaction costs are incurred; contributions and withdrawals are made by the pension plan members (PPMs) in the investment portfolio. The transaction cost are modeled as a proportion of the value of risky assets transacted. The aims of this paper are to (a) minimize the investment risks, (b) minimize the contribution risks and simultaneously maximize amount of contributions and (c) strategically minimize the amount of withdrawal by the PPMs. The optimal portfolio, contributions and withdrawal processes, with proportional transaction costs were obtained. Some numerical results are also presented in this paper.
    Keywords: Mean-variance, investment strategy, withdrawal, transaction costs, pension plan member, defined contribution, pension scheme

  • Modeling the barriers of Indian Pharmaceutical Supply Chain using fuzzy AHP.   Order a copy of this article
    by Vinayak Vishwakarma, Chandra Prakash Garg, Mukesh Kumar Barua 
    Abstract: The pharmaceutical and drug industry has gained attention globally as the health sector became the primary concerns. The Indian pharma industry is recognized as a rising healthcare contributor. Due to the profound discrepancy in the developing countrys production, it possibly affects the quality of producing medicine, which eventually harm the health of the patients. This attention made practitioners to come up with modern technologies and strategies to enhance a performance of the supply chain. The pharmaceutical supply chain (PSC) has a great stake in the development of sustainable strategies. Such unique supply chain is been challenged by the barriers especially in context of developing nations like India. The identification of barriers against pharmaceutical supply chain is desired to enhance the performance of the industry. This study identifies twenty eight barriers under six major criteria of Indian PSC through relevant literature and experts opinions. This paper proposes hybrid model based on fuzzy AHP to prioritize and rank barriers in PSC. This approach is also suitable in analyzing experts judgments and uncertainty involved in the process of prioritization. The findings and framework developed could be used by the drug industry, which helps them to destroy barriers to address sustainability and quality manufacturing. The analysis of the results indicates that market related barriers are the most important for Indian PSC. Further sensitivity analysis is also performed to test the robustness of the proposed approach.
    Keywords: Pharmaceutical Supply Chain (PSC), Barriers, fuzzy-AHP, sensitivity analysis India.

  • An efficient hybrid meta-heuristic ant system for minimum sum coloring problem   Order a copy of this article
    by Kourosh Eshghi, Amin Mohammadnejd Dariani 
    Abstract: Graph Sum Coloring Problem is a special class of graph vertex coloring problems. Because of its various applications in practical areas, especially in scheduling, many researchers have been focused on it during the past decade. In recent years, several heuristic and meta-heuristic algorithms have been developed to solve sum coloring problem.In this research, a hybrid algorithm based on mini-max ant system and simulated annealing is applied for the problem. This algorithm is tested on benchmark random graphs and compared to prior algorithms. Results show that in many cases, the best known results can be obtained or improved by the proposed algorithm.
    Keywords: Graph Sum Coloring, Graph Coloring, ACO Algorithm, Meta-heuristics

  • An Integrated Production and Distribution Problem with Direct Shipment: A Case from Moroccan Bottled-Water Market   Order a copy of this article
    by Jamal LMARIOUH, Nizar EL HACHEMI, Mohamed Anouar JAMALI, Driss BOUAMI, Louis-Martin ROUSSEAU 
    Abstract: We consider an industrial application encountered in the Moroccan context that involves the production and distribution of bottled water. Our industrial partner owns one plant from which all requests are delivered in direct shipments and usually full truckloads to the customers (a set of regional depots and wholesalers). We must take into account the production, the delivery requirements, multiple products, and inventory levels. The objective is to minimize the sum of the production, transportation, and inventory costs. We propose a mixed integer linear program for a variant of the multi-vehicle, multi-product production routing problem. Experiments have been conducted using CPLEX 12.3.0, and almost all instances were solved with a reasonable optimality gap. The results show that significant savings can be obtained by using our approach with respect to the current company practice.
    Keywords: production-distribution problem ; production planning ; vendor-managed inventory ; bottled-water

  • A Manufacturer-Retailers Dynamic Cooperative Advertising with Retail Competition   Order a copy of this article
    by Peter E. Ezimadu, Chukwuma R. Nwozo 
    Abstract: This work deals with the cooperative advertising in a manufacturer-retailers supply chain. Using Ericsons extension of Sethis sales-advertising dynamics model, it considers the manufacturer as the Stackelberg leader and the competing retailers as the followers who play a Nash game with each other. Using differential game theory it obtains a time consistent feedback Stackelberg equilibrium for the optimal advertising strategies and payoffs for all the players for a situation where retail advertising is subsidised and where it is not subsidised. It shows that while the manufacturers advertising effort reduces with the provision of subsidy, the retailers advertising efforts and the awareness shares increase. These consequently lead to increase in the payoffs for all the players. It also shows that a retailers advertising effort should be subsidised only if the rate of increase of the manufacturers payoff resulting from that retailers margin to the manufacturer is twice greater than the rate of increase of that retailers payoff. It further shows that increase in a players margin leads to increase in his payoff, and observes that while a fair player would increase his advertising effort as his profit margin increases, the other players reduce their advertising efforts, with the exception that when retail advertising is subsidised, a retailer increases his advertising effort as his margin to the manufacturer gets larger.
    Keywords: Supply chain, Stackelberg differential game, Nash differential game, Sethi’s sales-advertising model, Ericson’s extension of Sethi model

  • Customers Order Acceptance and Scheduling to Maximize Total Profit   Order a copy of this article
    by Mehdi Fazeli-Kebria, Ghasem Moslehi, Naser Mollaverdi, Mohammad Reisi-Nafchi 
    Abstract: In this paper, in order to maximize total profit the order acceptance and scheduling problem was generalized by considering some customers with their own orders, who do not agree with partial rejection/acceptance of them. Therefore, it was assumed that accepting or rejecting one customer is equal to accepting or rejecting all his orders. In addition, the considered penalty function for scheduling the orders was total weighted lateness. A mathematical programming model, an upper bound, a branch and bound, and an efficient heuristic algorithm were proposed for this problem. It was shown that before starting the problem solving procedure, it is possible to certainly reject or accept some customers. The proposed branch and bound algorithm solved 93% of 810 randomly designed problem instances in a reasonable time. Besides, the heuristic algorithm solved the problem instances with the size of 2000 customers at most with 0.1% deviation from a lower bound.
    Keywords: Scheduling; customer; order acceptance; lateness; branch and bound

  • Linear Fractional Programming Problems With Some Multi-choice Parameters   Order a copy of this article
    by Mahendra Biswal, Avik Pradhan 
    Abstract: Linear fractional programming is a class of mathematical programming problem where we optimize the ratio of two linear functions subject to some linear constraints. In this paper, we present a linear fractional programming model where some or all the parameters are multi-choice type. We present a novel and ecient method, which integrates classical Charnes-Cooper transformation and\r\nLagrange\'s interpolating polynomial, to transform multi-choice linear fractional programming problems into an equivalent mixed-integer nonlinear programming (MINLP) problems. A theorem is presented to establish the relation between the optimal solution of the multi-choice linear fractional programs and the equivalent MINLP. Some numerical examples are studied to illustrate the methodology.
    Keywords: Linear fractional programming; Multi-choice programming; Transportation problem; Interpolating polynomial; Mixed integer programming.

  • Preemptive Just-in-time scheduling problem on uniform parallel machines with time-dependent learning effect and release dates   Order a copy of this article
    by Keyvan Shokoufi, Javad Rezaeian, Babak Shirazi, Iraj Mahdavi 
    Abstract: This paper considers uniform parallel machines scheduling problem with time-dependent learning effects, release dates, allowable preemption and machine idle time to minimise the total weighted earliness and tardiness penalties which is known to be strongly NP-hard. To solve this problem, this research proposes a Mixed Integer Non-Linear Programming (MINLP) model. Afterward, in order to find the best solution in an effective solution space, a dominant set is proposed for the length of the schedule experimentally. Also, based on the allowable idle time, a new time-dependent learning model on parallel machines is proposed. Furthermore, a genetic algorithm (GA) and a hybrid of genetic algorithm and particle swarm optimisation (HGA-PSO) are proposed. Taguchi method is applied to calibrate the parameters of the proposed algorithms. Finally, the computational results are provided to compare the results of the algorithms. Then, the efficiency of the proposed algorithms is discussed.
    Keywords: Just-in-time scheduling; Uniform parallel machines; Time-dependent learning effect; Preemption; Machine idle time; Release date.

  • Net present value maximization of integrated project scheduling and material procurement planning   Order a copy of this article
    by Babak H. Tabrizi, Seyed Farid Ghaderi, Siamak Haji-Yakhchali 
    Abstract: A mixed-integer programming model is developed in this paper to consider simultaneous planning of project scheduling and material procurement problem as an efficient approach to improve project costs. The proposed formulation provides the model with the possibility to procure materials from a number of suppliers each offering a distinctive all-unit discount method. The purpose of the mathematical model is to develop schedules with the best net present value in order to guarantee successful completion of the project. We have applied a genetic algorithm to solve the problem, whose key factors are tuned by the Taguchi method. It is discussed how to generate initial feasible solutions as a preprocessing method to start the solution algorithm. Finally, the efficiency and applicability of the model is tested by a different set of category-based instances.
    Keywords: Project scheduling; Procurement; Net present value; Genetic algorithm.

  • Order Acceptance and Scheduling: Overview and Complexity Results   Order a copy of this article
    by Venkata Prasad Palakiti, Usha Mohan, Viswanath Kumar Ganesan 
    Abstract: We provide an overview of existing Order Acceptance and Scheduling (OAS) problems by considering due date related dimensions in deterministic scenarios. We introduce a three field notation for classifying the OAS problems and we review solution algorithms and complexity results for the same. We prove the complexity results for existing, open as well as new OAS problems with due dates; and provide the complexity results for newly defined OAS problems without due date dimensions.
    Keywords: Complexity; Order acceptance; Scheduling; Due dates.

  • Multi-Objective Fuzzy Probabilistic Quadratic Programming Problem   Order a copy of this article
    by Prabhat Rout, Sudarsan Nanda, Srikumar Acharya 
    Abstract: The aim of the paper is to present a multi-choice multi-objective fuzzy probabilistic quadratic programming problem and its solution methodology. The mathematical programming problem suggested here is difficult to solve directly. Therefore, three major steps are suggested to solve the proposed mathematical programming problem. In first step, fuzzy chance constraint is transformed to its equivalent chance constraint programming problem using \alpha-cut technique. Chance constraint technique is used to obtain a crisp multi-choice multi-objective quadratic programming problem. In next step, importance is given to handle multi-choice parameter using least square approximation technique. At the end of second step, a multi-objective quadratic mathematical programming is obtained. Finally, goal programming approach is used to solve the transformed multi-objective quadratic mathematical programming. Using existing methodology and software the final solution of the proposed model is obtained. The proposed method is implemented with a numerical example.
    Keywords: Multi-objective, Fuzzy probability, Goal programming, Multi-choice programming, Least square approximation.

  • A New Local Search Heuristic based on Nearest Insertion into the Convex Hull for Solving Euclidian TSP   Order a copy of this article
    by Mir Mohammad Alipour 
    Abstract: The Traveling Salesman Problem (TSP) is probably the most famous and extensively studied problem in the field of combinatorial optimization. This problem is in the fields of logistics, transportation, and distribution. Since the TSP is NP-hard, many heuristics for the TSP have been developed. In this paper, we developed a novel local search heuristic, based on Nearest Insertion into the Convex Hull construction heuristic for solving Euclidian TSP. The proposed method, Nearest Insertion into the Convex Hull Local Search (NICH-LS) is used to improve the initial tour, which is taken from a tour construction heuristic, Multiagent Reinforcement Learning (MARL) heuristic, by locally manipulating the order of nodes in the consecutive partial tours of the initial tour. Changing the order of nodes in a partial tour are done via constructing the NICH tour of these nodes and replacing the partial tour with the modified partial tour, if its length is reduced. The proposed novel local search heuristic is applied to 29 benchmark instances from TSPLIB. The computational results show the efficiency of the proposed local search compared with five state-of-the-art heuristics.
    Keywords: Local Search; NICH-LS; Traveling Salesman Problem; MARL; Nearest Insertion; Convex Hull

  • A new approach for integrated surgical procedure scheduling with arrival uncertainty   Order a copy of this article
    by Asie Soudi, Mehdi Heydari 
    Abstract: Efficient utilization of an Operating room is a common anxiety of surgical suit managers, which necessitate an effective planning and scheduling of surgeries. In this paper we develop a new version of hybrid flow shop scheduling for weekly planning and scheduling of an integrated operating theatre with multi operating rooms by considering the capacity of beds in a ward. Then, a converting technique is applied to change the non-linear model into a linear one by introducing new variables and constraints. Our goal is to suggest an integrated way of encountering operating theatre scheduling to coordinate hospitalisation and the time of surgery, in terms of minimising makespan and the waiting time of patients based on the problems reported by a typical non-profit hospital in Iran. The proposed model is compared with the current approach in the case study. By further considering the uncertainty, resulted from the arrival of emergency patients, a new approach is proposed, which contains a chance constrained programming model for predictive phase and a new reactive programming model for a reactive phase. We show how applying a chance constrained programming method to deal with arrival uncertainty will reduce by considering a virtual patient in hospital. The efficiency of the proposed approach is demonstrated through computational results in comparison with classic one.
    Keywords: stability of primary schedule; integrated surgical procedure; chance constrained programming; emergency patient; sequencing

    by Jayabharathiraj Jayabalan 
    Abstract: Some non-linear goal programming problems are formulated for predicting the decision parameters involved in the cancer and related cell growths such growth rate of normal & malignant cells, death rate of normal & malignant cells and mutation rate of normal cells. An application of preemptive and non-preemptive goal programming problem, some optimization programming problems are constructed using the statistical moments derived from two state cancer cell growths model and solved using the optimization LINGO software.
    Keywords: Goal Programming Problem (GPP), Birth and Death Processes, Cancer Cell Growths.

  • Structural modelling and analysis of Production System Life Cycle (PSLC): A Graph Theoretic Approach   Order a copy of this article
    by Rajesh Attri, Sandeep Grover 
    Abstract: The main purpose of this paper is to cultivate a cohesive system model for the structural modelling and analysis of Production System Life Cycle (PSLC) in terms of its prompting systems and interfaces between the systems and sub-systems. By means of Graph Theoretic Approach (GTA), PSLC is first modelled with help of graph theory, then by matrix method and at last, by a multinomial known as a permanent function. Different factors (hereby known as quality enabled factors) affecting the PSLC or its decisions are identified to develop a graph theoretic model, a matrix model, and a multinomial permanent model of the PSLC. The present work recommends an index with the help of GTA which can be effectively employed for assessing the quality of decisions made in the different phases of PSLC. The step by step procedure for the application of GTA methodology is itemized with an example that may assist the managers or decision makers to implement it in their organizations.
    Keywords: PSLC; GTA; Index; methodology; decision; QEFs.

  • Modeling Trends in Road Crash Frequency in Qatar State   Order a copy of this article
    by Galal Abdella, Khalifa Al-Khalifa, Maha Tayeseer, Abdelmagid Hamouda 
    Abstract: The data based regression models are widely popular in modeling the relationship between the crash frequencies and contributing factors. However, one common problem usually associated with the classical regression models is the multicollinearity, which leads to biased estimation of the model coefficients. This paper mainly focuses on the consequences of multicollinearity and introduces a multiple objective based best-subset approach for promoting the accuracy of the road crash model in Qatar-State. The prediction performance of the methodology is verified through a comparative study with two of well-known time series models, namely Autoregressive Moving Average (ARMA) and Double Exponential Smoothing (DES). The Mean Absolute Percentage Error (MAPE) is used to assess the ability of each model in maintaining minimum prediction errors. The methodology is illustrated by using a data set of road crashes in Qatar-State, 2007-2013.
    Keywords: ARMA; multicollinearity; road crash modeling

  • A heuristics approach for computing the largest eigenvalue of a pairwise comparison matrix   Order a copy of this article
    by Nachiappan (Nachi) Subramanian, Ramakrishnan Ramanathan 
    Abstract: Pairwise comparison matrices (PCMs) are widely used to capture subjective human judgements, especially in the context of the Analytic Hierarchy Process (AHP). Several methods are available to estimate priorities of elements from a PCM, the Eigenvector Method (EM) being the most common. Since the PCMs involve the use of human judgements, procedures to check the consistency of judgements is considered an important requirement while computing the priorities, as the priorities estimated from highly inconsistent judgements seem to be unreliable for further use. Consistency of judgements is normally computed in AHP context in the form of consistency ratio (CR), which requires estimation of the largest eigenvalue (max) of PCMs. Since max is automatically computed in the EM, computing CR is not a serious issue when EM is used to estimate priorities. However, EM is not the only method for estimating priorities from PCMs. Several alternatives to EM have been reported in the literature. Since many of these alternative methods do not require calculation of eigenvector, max and hence the CR of a PCM cannot be easily estimated. We propose in this paper a simple heuristics for calculating max without any need to use EM. Simulation is used to compare the accuracy of the proposed heuristics procedure with actual max for PCMs of various sizes. It has been found that the proposed heuristics is highly accurate, with errors less than 1%. The advantage of the proposed heuristics is that it can be easily calculated with simple calculations without any need for specialised mathematical procedures or software and is independent of the method used to derive priorities from PCMs.
    Keywords: Multiple Criteria Analysis, Pairwise Comparison Matrix, Eigenvector Method, the Largest Eigenvalue, Consistency index.

  • An integrated model of cell formation and scheduling problem in a cellular manufacturing system considering automated guided vehicles' movements   Order a copy of this article
    by Saeed Dehnavi-Arani, Mohammad Saidi-Mehrabad, Vahidreza Ghezavati 
    Abstract: In this paper, an integrated mathematical model for Cellular Manufacturing System (CMS) incorporating Cell Formation Problem (CFP) and intra-cell scheduling is considered. It is assumed that in order to make the flexibility in handling system, Automated Guided Vehicles (AGVs) are responsible for transferring the exceptional parts from one cell to other cell. Employing the AGVs in CMS can be challenging from mathematical model point of view. In other word, despite the common constraints in CFP and intra-cell scheduling, several constraints such as AGVs movement, preventing the AGVs collision as well as parts pickup/delivery by AGVs must be taken to account. There is not a comprehensive model including role of AGVs in a CMS. Hence, we make endeavor to formulate CFP, scheduling and role of AGVs at the same time. The objective function is to minimize the sum of the maximum completion time (makespan) and inter-cellular movements of parts. The proposed nonlinear model is transformed to a linear form in order to solve it for optimality. Eventually, two small-size computational experiments are generated and ran on the GAMS.9 commercial software to show the efficiency and accuracy of the proposed model.
    Keywords: Cellular manufacturing system, Cell formation problem, intra-cell scheduling, inter-cellular AGV

  • Fuzzy AHP Model for Challenges to Thermal Power Plant Establishment in India   Order a copy of this article
    by Varinder Kumar Mittal, Rahul Sindhwani, Himanshu Shekhar, Punj Lata Singh 
    Abstract: Thermal power plant is a huge project in context of resource utilization, time required for its completion and also large amount of funds are required for its establishment. So, delay in any activity especially activity of critical path would results in delay of whole project. Due to delay, the stress on the resources would also increase, which may further results in substandard quality of work. A fuzzy AHP process model has been used to prioritize the challenges to thermal power plant establishment through the inputs by experts from managers at the actual construction sites, designers, and consultants. The challenges identified in the present study can be categorized in three categories viz. high impact, medium impact and least impact challenges. This paper presented the ranking of 19 challenges faced in establishment of a new thermal power plant in India.
    Keywords: Fuzzy AHP; Challenges; Project Management; Ranking; Multi-Criteria Decision Making; Thermal Power Plant; Project Management

  • Analyzing of a finite buffer queue with finite number of vacation policy and correlated arrivals   Order a copy of this article
    by Karabi Sikdar 
    Abstract: This paper analyzes a MAP/G/1/N queue having finite number of vacations. The server takes a finite number (say J >= 0) of vacations whenever the system becomes empty at service completion epoch. If no clients are found by the end of the J^{th} vacation, the server does not go for vacation and stays in the system (called dormant period) until one client arrives. The number of vacation being finite, the server can utilize vacation period for any other jobs. This is obvious when J=1 and J rightarrow infty lead to single and multiple vacation models respectively. This research work mainly focuses more generalized vacation policy and different use cases. The following results have been obtained: (i) the distributions of clients in the queue at various epochs (ii) the Laplace-Stieltjes transform of the actual waiting-time distribution in the queue of a client under the FCFS discipline. The numerical data and graphs are presented to establish the analytical result.
    Keywords: Finite buffer, Finite vacation, Markovian arrival process, Queue, Steady state, Single server, Waiting time

  • Application of Fuzzy ANP method to select the best supplier in the supply chain   Order a copy of this article
    by Habibollah Danai, Shahram Hashemnia, Rokhshad Ahmadi, Seyed Hojjat Bazazzadeh 
    Abstract: Positive performance of purchase department has a direct impact on reducing cost and increasing profitability,and survival of supply chain. One of the major tasks of purchase department in the supply chain is to evaluate and select suppliers. The process of selecting a suitable supplier among different options and variables is an important task.Inappropriate selection of supplier in addition to impose more costs will have devastating impacts on the organization performance.The main objective of this study is to provide a useful approach to fuzzy ANP for evaluation of issues related to supplier selection.Many quantitative and qualitative concerns may be brought by the issues related to supplier selection,they are complicated issues. In this study, an ANP model was designed in fuzzy environment; through which the best accessories suppliers in Hiva Sanat Company are identified and prioritized.
    Keywords: Fuzzy ANP, supply chain

  • Novel criterion models in the inverse DEA problem   Order a copy of this article
    by Mojtaba Ghiyasi 
    Abstract: This article deals with "inverse" Data envelopment analysis (DEA) problem which is a mathematical programming based technique. The process of checking perturbed DMUs is simplified by proposing a new criterion model. This yields to a reduction of computational complexity for the criterion model. In addition, more realistic criterion model is also proposed and the relationship between existing criterion model and proposed models are discussed. Moreover, it is shown that proposed models solve some problematic failures of the existing inverse DEA models in the literature. Two numerical examples are provided to illustrate the idea. Proposed model are illustrated by a real life data and a comparison between existing criterion model in the literature and proposed criterion models is also provided.
    Keywords: Inverse DEA; Input/output estimation; Criterion model; Multiple-objective programming.

  • An analysis of discrete time Geo/Geo/1 queue with feedback, repair and disaster   Order a copy of this article
    by Sebasthi Priya, Sudhesh R 
    Abstract: A discrete-time queue with feedback subject to system disaster, server failures and repair is considered in this paper. The time-dependent system-size probabilities are obtained by using generating functions where the system of difference equations in two parameters namely time epoch(m) and number of customers(n) are transformed into another difference equations in terms of generating functions. The difference equations of generating functions satisfy a three-term recurrence relation which leads to continued fraction. System-size probabilities and some performance measures in steady-state are derived. Further, busy period distribution, reliability and availability are also obtained. Numerical illustrations are provided for different parameter values to see their effect on performance measures and to get more insight of the model behavior.
    Keywords: Disasters - feedback - reliability - busy period -continued fractions.

  • Optimal Bargaining Mechanisms with Refusal Cost   Order a copy of this article
    by K. R. Ramkishore, R K Amit 
    Abstract: We consider a bargaining situation between an arriving buyerrnand a seller, where the buyer and the seller have private valuations.rnThe seller has an inventory, which has to be sold over the infiniternhorizon. It is assumed that the seller incurs a refusal cost, if the traderndoes not take place. Myerson (1985) discusses four bilateral bargainingrnmechanisms in static settingsprice negotiation, splitting the differencernbetween sellers and buyers offer, buyer posted price and seller postedrnprice. The objective of this research is to study these mechanisms in therndynamic setting, with consideration of the refusal cost. In this paper, wernmodel the situation as a Markov decision process, which endogenizesrnthe sellers marginal inventory valuation. We find that the seller prefersrnposting prices when the refusal cost is low. Seller is indifferent betweenrnbuyer posted price and negotiation for the high refusal cost.
    Keywords: Markov Decision Process; Bilateral Bargaining Mechanisms; Refusal Cost

  • A Pruned Pareto Set for Multi-Objective Optimization Problems Via Particle Swarm and Simulated Annealing   Order a copy of this article
    by Ahmad Abubaker, Adam Baharum, Mahmoud Alrefaei 
    Abstract: A Pareto optimal set, which is obtained from solving multi-objective optimization problems, usually contain a large number of optimal solutions. This situation poses a challenge for decision makers in choosing a suitable solution from a large number of overlapping and complex Pareto solutions. This paper proposes a new procedure for solving multi-objective optimization problems by reducing the size of the Pareto set. The procedure is divided into two major stages. In the first stage, the multi-objective simulated annealing algorithm is used to solve a multi-objective optimization problem by constructing the Pareto optimal set. In the second stage, the automatic clustering algorithm is used to prune the Pareto set. This procedure is implemented to solve two multi-objective optimization problems, namely, the 0/1 multi-objective multi-dimensional knapsack problem and the multi-objective inventory system. The procedure enables the decision maker to select an appropriate solution efficiently.
    Keywords: Multi-Objective Problem; Inventory Control; Simulated Annealing; Particle Swarm Optimization; Automatic Clustering.

  • Wise Intrusion Detection System using Fuzzy Rough Set based Feature Extraction and Classification Algorithms   Order a copy of this article
    by Selvakumar Kamalanathan, SaiRamesh Lakshmanan, Kannan Arputharaj 
    Abstract: In recent times, it is critical to give abnormal state security to guarantee protected and successful correspondence of data through the Web. Nonetheless, secured information correspondence over the Internet or some other system is dependably a tested undertaking because of the risk of interruptions and assaults. Along these lines, Intrusion Detection Systems (IDS) have turned into a key segment in system security. Previously, different methodologies were used for creating interruption in location frameworks. In any case, sadly, any of these frameworks are not totally faultless because of the vulnerability of system activity made by ordinary clients and assailants. Henceforth, the requirement for the advancement of productive IDS has expanded consistently. This work proposes a versatile IDS taking into account Fuzzy Rough sets for characteristic determination. Also, another fluffy unpleasant set based nearest neighbourhood grouping is proposed for powerful arrangement of the KDD container dataset. This model uses a biased dataset that has 50:50 Normal and Attack information rather than the ordinary datasets that have 80:20 Normal and Attack information. The effectiveness of the proposed IDS is upgraded because of the utilization of one-sided information. The blend of highlight determination and characterization utilizing biased information set diminishes the false alert rate and builds the identification precision.
    Keywords: Intrusion Detection System; Intrusion detection; FRNN; Fuzzy rough set; Nearest Neighbourhood; Biased dataset

  • Parametric Multi-objective Fractional Programming Problem with Interval Uncertainty   Order a copy of this article
    by Ajay Bhurjee, Geetanjali Panda 
    Abstract: The present work defines interval and interval valued function in terms of parameters. Two types of multi-objective programming problems are considered: one is a general multi-objective interval fractional programming problem and the other is a parametric form of the first problem, where the objective and constraint functions are interval valued. Relationship between the solutions of both problems are developed, and some of the results are illustrated through numerical example.
    Keywords: Interval valued function; Multi-objective programming problem; Fractionalrnprogramming problem; Efficient solution.

  • A Dynamic Programming Model For Perishable Inventory Management   Order a copy of this article
    by Dipankar Mandal, Sri Vanamalla Venkataraman 
    Abstract: The amount of inventory should neither be in excess nor be inadequate. Excess inventory will result in additional cost to the company and lack of sufficient inventory will result in loss of customer demand. Thus in order to maintain an optimum inventory, inventory management is required. Inventories can be broadly classified as: Perishable and non-perishable inventories. Perishable inventories have a limited lifetime and hence it may happen that a substantial quantity of such products get outdated and hence wasted. Along with this loss an additional cost due to outdating may be incurred. In this paper we propose to increase the overall profit by reducing such costs; we classify the entire lifetime of such products into two periods: in the first period a customer derives a higher utility from the product and during the second period a customer derives a lower utility from the product. In traditional models discussed in literature the net profit which is the difference between selling price and overall costs, is being maximized. Through this research we propose a modification of this traditional model by varying the preferences of the product and hence its price over time. Under assumptions of stochastic demand we compare the traditional model with the modified model through numerical simulations. Our results indicate an improvement over the traditional model.
    Keywords: inventory management; perishable products; dynamic programming

  • Side constrained traffic assignment problem for multiclass flow   Order a copy of this article
    by Saeed Asadi Bagloee, Mohsen Asadi 
    Abstract: Despite many realistic features represented by capacity constraints in traffic assignment (generally known as side constraints), they are largely overlooked by both practitioners and scholars due to the inherent mathematical complexities. Such complexity is heightened in the context of multiclass traffic flow. To overcome such complexities; we first relaxed the capacity constraints by an intuitive interpretation of the corresponding Lagrange values, that is, the amount of penalty imposed to the travel time of the oversaturated road to make them saturated. This approach is basically a subgradient method and is dubbed inflated travel time (ITT). The penalty terms bear some resemblances to the marginal cost of the concept of system optimal traffic flow and congestion pricing. We then circumvented the multiclass facet by adopting a bias term for each user class in the Beckmann objective function. Hence the capacitated multiclass Traffic Assignment Problem (TAP) becomes an uncapacitated single-class TAP in which the aforementioned additional penalty is updated iteratively. The benchmark network of Hearn and the network of the city of Winnipeg are used for numerical evaluations. This study contributes to the literature by providing a new method free of any additional parameter. In the past studies, parameters calibrations are not trivial tasks. Furthermore, this study addresses the much awaited needs in the industry, by casting the ITT as an easy-to-use module in EMME 3 a leading commercial software- at a click away.
    Keywords: Multiclass Traffic Assignment; Side constraint; Capacity constraint

  • Cross Trained Servers with Balking and Feedback Service Facility by applying Constraint Programming Model   Order a copy of this article
    by Poongothai Venugopal, Godhandaraman P 
    Abstract: This paper deals with a service facility which has front and back room operations. In the front room, the servers deals with serving customers, perhaps from a queue and those in the back room perform a job which is generated by the front room. In service facilities, two major issues have been considered. A constraint programming model is used to solve queue control problem. rnA customer on arrival finds other customers in the front room, may join the queue or may leave service facility. After completing the front room service if the customer is unsatisfied with the service, he may rejoin for service again until the service is completed successfully. The goal is to determine the expected waiting time in the queue subject to back room constraints. The effects of various parameters on the performance measures are analyzed numerically.
    Keywords: Switching time, Balking, Feedback, Constraint programming, Optimization.

  • Forecasting of quay line activity with neural networks   Order a copy of this article
    by Iñigo L. Ansorena 
    Abstract: This paper presents a GRNN (Generalized Regression Neural Network) to forecast the activity of the North Quay at the port of Callao (Peru). To the author's knowledge, this is the first application of Artificial Neural Network theory to container terminals in South America. On the basis of service characteristics, operating profiles, and dimension of vessels, the model examines the berthing line. Five numerical variables are used to estimate one dependent variable. The results achieved are satisfactory and the model built up using Neural Network theory is able to estimate the staying time of vessels in Port.
    Keywords: neural network, berthing line, Callao port

  • Inventory model with Quantity discount, pricing and partial backlogging for a deteriorating items   Order a copy of this article
    by Rakesh Tripathi, Dinesh Singh 
    Abstract: Inventory model with quantity discount, pricing and partial backordering, although common in practice, have received very little attention from researchers. The objective of this study is to develop a deterministic inventory model with quantity discount, pricing and partial backordering when the product in stock deteriorates with time. Most retailers make pricing decisions of their products at certain times of the year and these decisions affect demand. In this study a power law form of the price dependence of demand is considered. The rate of deterioration is taken to be linear function of time. Solution procedure is provided for finding numerical results. The model is solved analytically. A numerical example is given to illustrate the theory. Sensitivity analysis is given to validate the proposed model.
    Keywords: Inventory; shortage; pricing, partially backlogged, deterioration

  • A DEA-PROMETHEE approach for complete ranking of units   Order a copy of this article
    by Maryam Bagherikahvarin 
    Abstract: Data Envelopment Analysis (DEA) and Multiple Criteria Decision Aid (MCDA) are two well-known approaches to rank so-called Decision Making Units (DMUs) or alternatives. In this contribution, a two-step model is presented to completely rank units according to multiple inputs and outputs. In the first step, DEA is applied between each pair of DMUs independently to generate a pairwise comparison matrix. In the second step, the obtained matrix is exploited by means of PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations) to completely rank units. We show the compatibility between the resulting ranking of DEA and DEA-PROMETHEE methods while there exist just one input and one output. We also discuss the monotonicity property of the method. We compare DEA-PROMETHEE with an integrated DEA-AHP approach on a numerical example.
    Keywords: Data Envelopment Analysis (DEA); Multiple Criteria Decision Aid (MCDA); PROMETHEE; Efficiency; Ranking; Decision Making (DM)

  • Preferable Pareto optimal solutions for specified key objective functions to multiple objective linear programming problems using trade-off ratios under fuzzy environment: An iterative process   Order a copy of this article
    by Arindam Garai, Tapan Kumar Roy 
    Abstract: In this paper, one general iterative process is proposed for obtaining preferable Pareto optimal solutions, based on specified key objective functions, to multiple objective linear programming problems under fuzzy environment. In reality, decision maker usually specifies one key objective function to each of such problems. But there are known disadvantages in applying existing fuzzy optimization techniques, in which weights, utility functions etc. are used; whereas in other techniques, none of the objective functions can be specified effectively as key objective function. Moreover, correlation between key objective function and other objective functions may not be exactly known to the decision maker. In existing interactive fuzzy optimization techniques, initially developed by Sakawa et al (1984), all such reference levels of fuzzy objective functions are taken as unity. But we may find it unrealistic to expect each of conflicting objective functions to attain individual goals simultaneously. In this paper, we propose to employ trade-off ratios of membership functions of fuzzy objective functions to determine corresponding reference membership levels analytically and develop one iterative process to find preferable Pareto optimal solutions under fuzzy environment. Numerical examples further illustrate our proposed iterative process. Finally conclusions are drawn.
    Keywords: Fuzzy decision making; Fuzzy optimization; Iterative process; Key objective functions; Multiple objective linear programming; Pareto optimal solutions; Reference membership levels; Trade-off ratios.

  • Optimal manoeuvre for two cooperative military elements under uncertain enemy threat   Order a copy of this article
    by Dušan Hrabec, Jan Mazal, Petr Stodola 
    Abstract: Consider an armed military group of two friendly elements that need to move between two given locations - a starting point and an end point - in an environment with the possible presence of armed enemy elements. The potential positions of the enemy may or may not be known in advance. Therefore, we capture the possible threat by identifying the locations that are advantageous from the enemy's perspective. We model the problem using a stochastic programming approach. We then provide a deterministic reformulation of the problem in consideration of this possible threat and, through the use of cooperation, we minimise the total predicted threat as well as the suitability of the terrain for movement (or total length). Finally, we provide concrete experimental calculations and visualisations in our tactical information system, which serves as a tool for commanders to support their decision-making processes, and compare the obtained results to a selection of different approaches.
    Keywords: Optimal/safe manoeuvre; operations research; mathematical modeling; decision-making; stochastic optimisation; shortest path; military tactics; cooperative military elements.

  • Flexible target setting in mergers using inverse data envelopment analysis   Order a copy of this article
    by Gholamreza Amin, Amar Oukil 
    Abstract: In a merger, one important issue is the estimation of the levels of inputs and outputs required from each merging decision making unit (DMU) so that the merged entity can realize a desired efficiency target. This paper uses the potential of inverse data envelopment analysis (InvDEA) to build a flexible target setting of the inputs and outputs. This study expands the application of the InvDEA methodology in a merger by introducing a flexible target setting that allows the decision maker to favour specific input in the target setting. We use a dataset of thirty universities to illustrate the practical scope of the proposed flexible target setting method, which can obviously be employed in any other merging context.
    Keywords: Data envelopment analysis; Inverse data envelopment analysis; Mergers; Multiple optimal solutions; Flexible target setting.

  • Multi-item Multi-choice Integrated Optimization in Inventory Transportation Problem with Stochastic Supply   Order a copy of this article
    by Gurupada Maity, Sankar Kumar Roy 
    Abstract: This paper explores the study of multi-item multi-choice transportation problem (TP) in the ground of inventory optimization.Using the concept of basic inventory optimization, we develop a methodology for integrated optimization in inventory transportation (IOIT) to reduce the logistic cost of a system. To accommodate the present situations of real-life TP, the stochastic supply is taken into consideration in the article. We describe a technique to reduce stochastic constraint to deterministic constraint with the help of stochastic programming. An algorithm is presented to solve the proposed problem using MATLAB. Then the proposed problem is solved by well known optimization technique; and the obtained solution is compared with the solution of basic inventory optimization method. An example is presented to verify the effectiveness of the paper.
    Keywords: Transportation Problem; Multi-Item Inventory Problem; Multi-choice Programming,Stochastic Programming.

  • The consideration of opened facilities operational volumes in designing supply chain network   Order a copy of this article
    by Vo Hung Duong, Nguyen Hung Bui 
    Abstract: In this paper, we deal with a single-item, multi-period, two-echelon capacitated facility location problems where manufacturing plants and distribution centers (DCs) are decided to be opened or not at the pre-determined potential sites. At each opened facility, our model controls operational level over or under its minimum requirement volume. To do that, we use the big M technique to detect running status. If the opened facility runs at lower minimum requirement volume, penalty cost will occur and add to objective value, which should be as low as possible. This information helps the investors and managers to evaluate performance of their supply chain (SC) network system. The problem is formulated as a mixed integer linear programming (MILP) model with the objective to minimize the total cost including transportation costs, production costs, inventory holding costs, fixed costs for opening facilities, and penalty costs. Based on the specific structure of the developed model, we need one additional constraint set before using Lagrangian relaxation algorithm to solve the problem. Numerical experiments are then conducted to compare the solution of the proposed approach as opposing to the optimal solution obtained by the commercial Lingo solver.
    Keywords: supply chain; mixed integer linear programming; lagrangian relaxation; network design.

  • Minimizing Total Weighted Tardiness with Considering Compulsory Idle Times on Single Machine   Order a copy of this article
    by Hossein Zoulfaghari, Javad Nematian 
    Abstract: In this paper, we introduce a total weighted tardiness minimization problem of single machine system with considering compulsory idle times of machine (such as maintenance operations, etc.). Then, the problem is solved by using a variable restricted neighborhood search approach. In this approach, an algorithm has been designed in which some special methods are used to produce and improve good initial solution. To represent our algorithm performance, 200 instances with small and medium sizes and 200 instances with large sizes are solved and their results have been achieved in favor of minimization of weighted total tardiness. Furthermore, special relations operated based on a factor are used to produce instances and obtained results are investigated.
    Keywords: Total Weighted Tardiness, Single Machine, Compulsory Idle Time, Variable Restricted Neighbourhood Search

  • Survivable multi-commodity network flow design; Case of Node Capacities and arc failure   Order a copy of this article
    by Majid Anisi, Hasan Salehi Fathabadi 
    Abstract: This paper is focused on the design of a survivable network with node capacitiesrnand flow restrictions. The goal is to design a survivable network at minimumrncost so that feasible flows exist at the time of multiple simultaneous failurernarcs (failure scenario). To solve this problem Benders decomposition (BD) wasrninitially proposed and, then, a new strategy was presented to obtain specificrnfailure scenarios.We computationally demonstrated that Benders decompositionrnusing this strategy could obtain the optimal solution faster. This strategy reduced iterations more greatly than the BD approach. Using this strategy, the length of CPU time required for solving the problem was reduced by 30%on average.
    Keywords: Survivable; Network Design; Benders’ Decomposition; node capacities.

  • A two-stage method for the Capacitated Multi-Facility Location-Allocation Problem   Order a copy of this article
    by Martino Luis, Chandra Ade Irawan, Arif Imran 
    Abstract: This paper examines the capacitated planar multi-facility location-allocation problem, where the number of facilities to be located is specified and each of which has a capacity constraint. A two-stage method is put forward to deal with the problem where in the first stage a technique that discretises continuous space into discrete cells is used to generate a relatively good initial facility configurations. In Stage Two, a Variable Neighbourhood Search (VNS) is implemented to improve the quality of solution obtained by the previous stage. The performance of the proposed method is evaluated using benchmark data sets from the literature. The numerical experiments show that the proposed method yields competitive results when compared to the best known results from the literature. In addition, some future research avenues are also suggested.
    Keywords: capacitated; continous location problem; heuristics; variable neighbourhood search.

  • Mean Response Time of a Two Stage Open Queueing Network Model with Feedback   Order a copy of this article
    by Suresh Pathare, Vinayak Gedam 
    Abstract: The response time plays an important role in studying the various characteristics of queueing network models with feedback. Data based recurrence relation is used to compute a sequence of response time of queueing network models with feedback. The sample means from those response times, denoted by $h r_1^F $ and $h r_2^F$ are used to estimate true mean response times $r_1^F$ and $r_2^F$. Further we construct some confidence intervals for response times $r_1^F$ and $r_2^F.$ We investigate the accuracy of the different confidence intervals of $r_1^F$ and $r_2^F$ and the proposed estimators $h r_1^F $ and $ h r_2^F$ by calculating the coverage percentage, average length, relative coverage and relative average length with the help of numerical simulation study.
    Keywords: Response Time; Coverage percentage; Relative coverage; Relative average length; Feedback; Confidence Intervals.

  • One-for-One Period Policy and its Optimal Solution over a Finite Horizon   Order a copy of this article
    by Mohammadbagher Afshar-Bakeshloo, Fariborz Jolai, Mostafa Mazinani, Farhad Salehian 
    Abstract: Recently, a new ordering policy named one-for-one period policy has been introduced in a steady state condition for the zero ordering cost with an assumption of lost sales. In this policy, constant time interval between two consecutive unique orders is assumed. In contrast to this policy, this paper addresses a new approach in which inter-arrival times are determined in a finite horizon with limited amount of arrivals. Due to the transient condition of our approach, namely (S(n),1), matrix multiplication must be employed, but it quickly becomes cumbersome for large n as there are (n- 1) decision variables for n arrivals. Thus, we have invoked the genetic search strategy to reduce the amount of search. Finally, we provide a numerical analysis to evaluate the performance of our approach. The results showed that by applying the suggested approach we can save cost compared with the one-for-one period policy for n<200, especially when the ratio of lost sales to holding cost is large. Furthermore, arrivals scheduling creates a dome-shaped inter-arrival times.
    Keywords: Inventory control; one-for-one period policy; scheduling; poisson process; Genetic Algorithm.

  • The Effect of Market Concentration on Total Welfare and its Distribution in a Supply Chain Case   Order a copy of this article
    by Tchai Tavor, Tchai Tavor, Uriel Spiegel 
    Abstract: The concentration of industries affects the total welfare of the economy and changes its distribution among all economic agents. This paper examines an entire supply chain that includes multiple stages within the cheese industry. It presents the effect of market concentration levels on prices, quantities, profits, consumer surplus and the total welfare of all sectors involved in the production and consumption processes. Since increased concentration may lead to a higher degree of inequality, the relationship between inequality and efficiency is investigated. These issues are demonstrated by using a simplified structure of the cheese industry.
    Keywords: Concentration; Herfindahl-Hirschman index; supply chain; monopoly and retailers.

  • Modeling Sustainable Procurement Problem: A Goal Based Approach   Order a copy of this article
    by Harpreet Kaur, Surya Prakah Singh 
    Abstract: Sustainable procurement problem not only considers traditional parameters such as purchasing cost, ordering cost, holding cost, and logistics cost but also considers non-traditional parameters such as carbon emission cost, thus, making it a multi-objective optimization problem. However, in competitive business scenario, organizations have also some set targets for various traditional and non-traditional parameters making the procurement process a goal oriented one. These goals in turn make the overall procurement problem conflicting while the organization tries to achieve all these goals with minimum deviations. Therefore, this paper is a novel attempt to optimize Multi-objective Sustainable Procurement Problem (MoSPP) in presence of various goals using goal programming approach and is referred as Multi_Goal_SPP. The goals for goal programming formulation are computed through MoSPP. The methodology is demonstrated through two illustrative examples solved in LINGO 10. Multi_Goal_SPP establishes optimal tradeoff between conflicting goals set by organization. The proposed model ensures the minimum total deviation from goals required to meet specified demand.
    Keywords: Multi-objective Sustainable Procurement Problem (MoSPP), Multi_Goal_SPP, Sustainable procurement problem, Goal programming, Multiple objectives, Carbon emissions.

  • A Genetic Algorithm for a Flow Shop Scheduling Problem with Breakdown Interval, Transportation Time and Weights of Jobs   Order a copy of this article
    by Pankaj Kumar, Harendra Kumar, Manisha Sharma 
    Abstract: A flow shop problem exists when all the jobs have the same processing order through the machines. In flow shop problem, the technological demand that the jobs pass between the machines in the same order. The objective of this paper is to find an optimal ordering of n jobs for 3 machines involving processing times, transportation times, break down interval and weights of the jobs by using genetic algorithm (GA) approach. The proposed algorithm is compared with already published problems in literature. The numerical results show that the present algorithm is good one within the best well known heuristic algorithms in the field.
    Keywords: Flow shop scheduling; processing time; break down interval; genetic algorithm.

  • An Integrated Vendor-Buyer Model with Equal Shipments, Normally Distributed demand and Empirically Distributed lead-time   Order a copy of this article
    by Mehdi Seifbarghy, Salman Barzegar 
    Abstract: This study addresses Joint Economic Lot-Sizing (JELS) Problem with a vendor and a buyer which replenishes a given product from the vendor. Shipments transferred from the vendor to the buyer are assumed to have equal sizes. In addition, unlike the previous studies, demand and delivery are assumed to be stochastic and following normal and experimental distributions respectively. In the given model, we assume that the combination of the two types of backordered and lost demand can exist. In addition, service level constraint is also considered. The purpose is to find the optimal order values, the number of shipments, reorder point and safety stock. We present a heuristic method in order to reach the decision variables of the model. Numerical examples indicated frugality in chain cost in the integrated model and efficiency in the heuristic method. In addition, the results showed that chain costs increase by increasing delivery time, but the values of reorder point and safety stock depend on the changes in the level of services and they increase as the service level increases.
    Keywords: Supply chain; Vendor-buyer integration; Equal Shipments; Stochastic demand; Stochastic lead-time.

  • Modelling efficient and anti-efficient frontiers in DEA without explicit inputs   Order a copy of this article
    by Ali Emrouznejad, Guo-liang Yang 
    Abstract: Data envelopment analysis (DEA) is one of the most widely used tools in efficiency analysis of many business and non-profit organisations. Recently, more and more researchers investigated DEA models without explicit input (DEA-WEI). DEA-WEI models can divide DMUs into two categories: efficient DMUs and inefficient DMUs. Usually there is a set of DMUs which are efficient so that conventional DEA models could not rank them. In this paper, we first develop a performance index based on efficient and anti-efficient frontiers in DEA-WEI models. Further, the corresponding performance index in DEA-WEI models with quadratic utility terms (quadratic DEA-WEI) is proposed also. Finally, we present two case studies on performance assessment of basketball players and the evaluation of research institutes in Chinese Academy of Sciences (CAS) to show the applicability and usefulness of the performance indices developed in this paper.
    Keywords: Data envelopment analysis; DEA without explicit input; efficient frontier; anti-efficient frontier.

  • Credit financing in economic ordering policies for deteriorating items with stochastic demand and promotional efforts in two-warehouse environment   Order a copy of this article
    by Chandra K. Jaggi, Mamta Gupta, Sunil Tiwari 
    Abstract: Retailers are nowadays focusing on promotional activities in order to attract customers because of increasing competition. Promotional efforts have significant impact on the replenishment policy and the sale price of goods. In this paper, a two warehouse inventory model is developed for deteriorating items subject to promotional efforts under permissible delay in payments. Here, a price dependent stochastic demand function is considered with partially backlogged shortages. Several realistic cases, sub cases and scenarios have been taken into account and the corresponding problems have been formulated as non-linear constrained optimization problems. To illustrate the proposed model two numerical examples have been solved. Further a numerical example has been extended to perform sensitivity analysis of the model and discuss specific managerial insights.
    Keywords: Inventory; Deterioration; Partially Backlogging; Permissible Delay in Payment; Price Dependent Stochastic Demand; Promotional Effort.

  • Using Valid Inequalities to solve the Integrated Production-Inventory-Distribution-Routing Problem   Order a copy of this article
    by Noha Mostafa, Amr Eltawil 
    Abstract: The Production-Inventory-Distribution-Routing Problem is an integrated supply chain management problem that combines decisions on several functions. The objective is to minimize the total costs without violating demand fulfilment policy. A Production-Inventory-Distribution-Routing Problem of medium size is a combinatorial optimization problem mostly intractable to solve using exact methods. The main contribution of this work is to introduce valid inequalities for a problem with a single plant, multiple products and multiple heterogeneous vehicles to improve the quality of lower bounds, obtain a good approximation of the convex hull of the polyhedron of the problem and reduce its hypervolume, so that the computation time can be reduced without a significant effect on the quality of the solutions found. Results showed that adding the valid inequalities to the model can improve the percentage gaps for all the tested instances with a significant improvement in the lower bounds from the poor bounds obtained from the Linear Programming relaxation (up to 98.8% for the data set of 50 customers and up to 79.7% for the data set of 100 customers).
    Keywords: PIDRP; vehicle routing; lower bounds; valid inequalities; supply chain management; Lot sizing; Inventory management; Distribution.

  • A Non-Assignment Problem based formulation for the Asymmetric Travelling Salesman Problem and its variation   Order a copy of this article
    by Nahid Jafari 
    Abstract: In this paper, an exact formulation for the Asymmetric Travelling Salesman Problem (ATSP) is presented by approaching it as a single commodity flow problem. This approach is different from existing exact formulations in the literature which are based on the Assignment Problem (AP), thus, it resolves issues that the AP-based formulations pose for solving certain real world instances by standard integer programming methods such as branch and bound. Moreover, in our computational experiments, half of the total computational time is expended to find the first feasible solution, then it is converged quickly to optimality. In contrast, the AP-based models rapidly computed an initial feasible solution but showed slow convergence to the optimum. Moreover it is extendable to other variations of the Travelling Salesman Problem (TSP) such as the multiple TSP and the selective TSP.
    Keywords: Asymmetric Traveling Salesman Problem; Multiple Traveling Salesman Problem; Selective Traveling Salesman Problem.

  • Transient Solution of Fluid Queue Modulated by Two Independent Birth-death Processes   Order a copy of this article
    by Shruti Kapoor, Dharmaraja Selvamuthu, Arunachalam Viswanathan 
    Abstract: The objective of this paper is to study the transient distribution of the buffer content in any intermediate node of a wireless network based on IEEE 802.11 standards. The steady state solution of the discussed model has already been given in [13]. The methodology used, maps the underlying model to a fluid queue model driven by two independent finite state birth-death processes with the aim to simplify the solution which is obtained in closed form with numerical illustration. Along with the buffer occupancy distribution, other performance measures: throughput, server utilization and expected buffer content are also obtained numerically.
    Keywords: IEEE 802.11 wireless networks; fluid queue; buffer occupancy distribution.

  • Portfolio rebalancing under uncertainty using meta-heuristic algorithm   Order a copy of this article
    by Mostafa Zandieh, Seyed Omid Mohaddesi 
    Abstract: In this paper, we solve portfolio rebalancing problem when security returns are represented by uncertain variables considering transaction costs. The performance of the proposed model is studied using constant-proportion portfolio insurance (CPPI) as rebalancing strategy. Numerical results showed that uncertain parameters and different belief degrees will produce different efficient frontiers, and affect the performance of the proposed model. Moreover, CPPI strategy performs as an insurance mechanism and limits downside risk in bear markets while it allows potential benefit in bull markets. Finally, using a globally optimization solver and genetic algorithm (GA) for solving the model, we concluded that the problem size is an important factor in solving portfolio rebalancing problem with uncertain parameters and to gain better results, it is recommended to use a meta-heuristic algorithm rather than a global solver.
    Keywords: Portfolio Rebalancing; Transaction Costs; Constant-Proportion Portfolio Insurance (CPPI); Uncertainty Theory; Meta-heuristic Algorithm.

  • A Heuristic Search Routine for Solving Two Objective Mixed Integer LP Problems for Scheduling in a Service Factory   Order a copy of this article
    by Faizul Huq, M. Khurrum Bhutta, Ziaul Huq 
    Abstract: This paper presents a two objective mixed binary integer linear programming model and a search routine solution method is proposed using a Service Factory environment with multi-processor workstations and a constant daily workload, for employee scheduling, number of machines per station, and makespan minimization objectives. The search routine is simple enough to be implemented by managers using readily available spreadsheet programs. Solution of the four station Service Factory formulation yielded results for improvement in the makespan of the shop. This search routine can be used by management in streamlining and optimizing the Service Factory production environment as exemplified in the four station case, and could also be applied to multi-processor flow shops.
    Keywords: Service Factory; Scheduling; Lot Splitting; Binary Integer Linear Programming; Makespan.

  • The Adopting of Markov Analysis to forecast the probability of students' enrollment at universities scientific faculties in Jordan   Order a copy of this article
    by Yazan Migdadi, Hala Sulaiman Mahmoud Al-Momani 
    Abstract: The aim of this research is to predict the probabilities of enrollment students of scientific faculties at public universities in Jordan, to forecast the changes of probabilities at universities' scientific faculties, to compare the differences among universities forecasted probabilities and to examine the impact of universities' location on enrolled students of scientific faculties at those universities. Secondary data were collected from the annual statistical reports of the Ministry of Higher Education and Scientific Research. 8 out of 10 public universities were surveyed, 10 scientific faculties were investigated. Markov analysis technique was used to analyze the departments efficiency. Linear regression was used to forecast the change of probabilities at universities' scientific faculties. Non-parametric statistical technique was used to compare the difference among universities forecasted probabilities and to analyze the relationship between universities' location and enrolled students. This study revealed that expected number of enrolled students of scientific faculties over time at the University of Jordan, Mu'tah University, AL al-Bayt University and AL-Hussein Bin Talal University will decrease. However, the expected number of enrolled students at the rest of universities will increase. The changes of probabilities at universities' scientific faculties were found. Significant differences of forecasted probabilities were found among some universities. It also was found that the location of university is not a determinant for expected enrolled students at all universities scientific faculties. The previous studies have not focused on investigated expected probabilities of enrolled students at universities in Jordan and not have investigated other aspects were included in this research.
    Keywords: Markov Analysis; forecasting; enrollment; scientific faculty; university; Jordan.

  • Transient analysis of an M/M/c queuing system with retention of reneging customers   Order a copy of this article
    by Rakesh Kumar 
    Abstract: In this paper we study the transient behavior of an M/M/c queuing system with reneging and retention of reneging customers. The probability generating function technique along with Bessel function properties is used to derive the time-dependent state probabilities explicitly. The transient behavior of system size probabilities, the expected system size, the average reneging rate, and the average retention rate is studied with the help of a numerical example.
    Keywords: transient analysis; M/M/c queuing system; in nite capacity; operational research; reneging; retention.

  • Multi Criteria Decision Making Approach to Material Selection in Tribological Application   Order a copy of this article
    by Santosh Vitthal Bhaskar, Hari Narayan Kudal 
    Abstract: This paper presents application of various Multi Criteria Decision Making (MCDM) techniques to material selection in tribological application. The alternative materials considered for ranking are variants of AISI 4140 which is nitrided and then coated with various low-friction surface coating materials. This study analyses and discusses the priority settings on the basis of constructed model which compares the ranking outcomes among Simple Additive Weighting (SAW), Multiplicative Analytic Hierarchy Process (MAHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), modified-TOPSIS (M-TOPSIS), and Compromise Ranking Method (VIKOR). Attribute weights obtained by Analytic Hierarchy Process (AHP), are used as the inputs and outputs are materials rankings on the basis of Material Selection Index (MSI), which help designers and engineers to reach a consensus on materials selection for a specific application. The ranks obtained by various methods are compared. Results indicate that suggested method can effectively be applied to similar problems.
    Keywords: Analytic Hierarchy Process;AHP; Multiplicative Analytic Hierarchy Process ; MAHP; Multi Criteria Decision Making; MCDM; Simple Additive Weighting; SAW; Technique for Order Preference by Similarity to Ideal Solution; TOPSIS; Compromise Ranking Method; VIKOR.

  • Side constrained optimization to capture capacity of choices in the multinomial logit model: case study of income tax policy in the United States prior to the 2009 economic crisis   Order a copy of this article
    by Saeed Asadi Bagloee, Glenn Withers 
    Abstract: Discrete choice models in general and multinomial logit models in particular are leading approaches in the econometric behavioral analysis. In real application, one sometimes needs to take the capacities of the choices into account. To this end we propose a convex optimization formulation in which the exponential formulation of the logit model is upheld in the Karush-Kuhn-Tucker (KKT) conditions. The capacities of the choices are then added to the formulation as side constraints. A solution algorithm based on the Successive Coordinate Descent (SCD) is proposed. For numerical evaluation, we investigate U.S. income tax policies for the years prior to the 2009 crisis. The question of interest is: how far will states go to increase the income tax share? To answer, the organic relation between the tax records of the states and employment data are captured using the logit model. Two tax sources are defined: income tax and all other tax. In the reverse-engineering approach, the total aggregated tax revenues at federal level from these two sources are made available to the states; the states are set to compete to fill their tax portfolios from the aggregated sources depending on their preferences. These two sources are limited in monetary size for which reason we employ a capacitated logit model. The numerical analysis shows that the model is able to closely replicate the income tax data. The tendency of the states for choice of income tax versus other tax sources is also assessed and it is found that: (i) all states show a propensity to levy more income tax; (ii) this propensity has a ceiling cap similar to what is already known from the Laffer Curve; and (iii) residents in the states with already high income tax are more likely to be subjected to even heavier income tax within caps.
    Keywords: convex optimization; Successive Coordinate Descent (SCD); logit; income tax; behavioural model; Laffer curve; economic crisis; recession.

  • Proposing a New Approach to the Selection of Material Portfolio Using a Combination of Data Mining and Optimization Methods   Order a copy of this article
    by Farshad Faezy Razi, Hamed Sarkari 
    Abstract: The present paper aims to provide a new framework for the selection of a portfolio of materials. This paper shows that, compared with the traditional methods in the selection of materials, how the new materials are analyzed based on new ideas. The case study is materials required for production of tile glaze in both traditional and modern methods. Modeling in this study was done based on mathematical description approach. The results of execution of feature selection algorithm revealed that important factors in the selection of glaze for production of tile in both traditional and modern methods include cracking, self-cleaning, uniformity, water absorption, and market potential. In addition, the results of K-means algorithm showed that all the materials of choice for production of tile glaze are not placed in a single cluster. Therefore, each cluster should be evaluated separately. Unlike the classical approaches to the selection of materials, in the new approach, candidates for the selection of tile glaze are firstly clustered by K-means algorithm. Each cluster is independently ranked using free disposal hull model. Free disposal hull is a mathematical programming model based on data envelopment analysis. The final optimized portfolio of materials was determined using the genetic algorithm.
    Keywords: Material selection; Feature selection algorithm; K-means algorithm; DEA-FDH; Genetic algorithm.

  • Revenue sharing contract under asymmetric information   Order a copy of this article
    by Sri Vanamalla Venkataraman, Dereje Asfaw 
    Abstract: We analyze a two stage supply chain with a single risk neutral manufacturer and a risk neutral retailer in a single period setting. The retailer associates costs towards procurement of the product and its marketing and sales. These costs are often private information of the retailer, the retailer has an incentive to overstate his associated costs to acquire a larger share of revenue. In this paper assuming retailers have private information about their associated costs we derive an optimal revenue sharing contract as designed by the manufacturer for each of the cost structure of the retailers. The retailer's choice from such a contract menu reveals information about their true cost. We analyze our model under various scenarios; we observe that the proposed revenue sharing contract improves the profit of manufacturer and that of the total the supply chain.
    Keywords: supply chain management; asymmetric information; revenue sharing; contract.

  • A Decision-Making Approach for Enterprise Architecture Evolution using Simulation   Order a copy of this article
    by Sérgio Guerreiro, Khaled Gaaloul 
    Abstract: Enterprise architecture (EA) is a discipline that provides management with appropriate indicators and controls to steer and model the enterprise during change. However, the management of such change is a challenging task for enterprise architects due to the complex dependencies amongst EA models when evolving from initial (As-is) to posterior (To-be) states. We present an approach supporting design decision during EA evolution, by assisting enterprise architects in computing best alternatives to a posterior state. In doing so, we model EA artifacts dependencies and identify their evolution during change. This model is, then, processed using a control schema to inform EA design decisions. Further, we rationalize on design decision by computing EA models alternatives, using Markov theory. Finally, we evaluate this decision-making approach using a motivating example by simulating a stochastic solution in order to argue about the usefulness and applicability of our proposal.
    Keywords: Enterprise Architecture; Evolution; Design Decision; Simulation; Markov Theories.

  • A multiple-criteria decision analysis for criticality of boiler tube failures in interval type-2 fuzzy environment   Order a copy of this article
    by Ashoke Kumar Bera, Dipak Kumar Jana 
    Abstract: This paper presents a multi-factor decision-making approach for prioritizing criticality of failure modes as an alternative to traditional approach of failure mode effect and criticality analysis (FMECA). A review of the literature reveals that although a number of studies have been done on these issues, but none of them have explicitly studied the variations in experts opinion (intra-personal uncertainty) and the variations in the understanding among experts (inter-personal uncertainty) together. To deal with this problem, this literature proposes a new fuzzy FMECA approach based on IT2 fuzzy sets, which has the ability to capture both intra-personal and inter- personal uncertainty. This approach introduces a more accurate representation of the aggregated data by presenting variations among the individual judgments into type 2 fuzzy numbers, allowing suitable weights for each risk factor by decision makers and thereby developing a flexibility for analysis. The proposed method is applied to evaluate the criticality of different failure modes of boiler tubes of a coal-
    Keywords: Failure mode e®ect and criticality analysis; Interval type-2 fuzzy set; Multiple-criteria decision analysis; Signed distance; Linear assignment method; Interval type-2 fuzzy number.

  • A New Hybrid Supplier Selection Model   Order a copy of this article
    by Tuan Son Nguyen, Sherif Mohamed, Anisur Rahman 
    Abstract: Selecting the right supplier is one of the most challenging tasks for organisations as it essentially reduces purchasing cost and improves corporate competitiveness. This study aims at developing a hybrid model in supplier selection for a non-homogeneous group decision-making process to select a supplier that best satisfies the purchaser. The analytical hierarchy process (AHP), house of quality (HOQ), and linguistic ordered weighted averaging (LOWA) operator are applied in the proposed model. This model is illustrated with a real world example by applying it to a mechanical manufacturing company in Vietnam. It is found that supplier selection does not only depend on a low price offer, but also on suppliers quality, technological capability, capability of on-time delivery, flexibility and good relationship. This study makes new methodological and practical contributions to supplier selection research and applications through development of a hybrid model for non-homogeneous group decision-making in supplier selection, and for the first time this study applies the LOWA operator in aggregating linguistic terms of non-homogeneous group decision-making in a supplier selection process.
    Keywords: supply chain management; decision making; supplier selection; analytic hierarchy process; house of quality; linguistic ordered weighted averaging.

  • On the application of Bayesian Credibility Theory in Movie Rankings   Order a copy of this article
    by Palash Ranjan Das, Gopal Govindaswamy 
    Abstract: Credibility theory is a branch of actuarial science devoted to quantify how unique a particular outcome will be compared to an outcome deemed as typical. In this paper, we will examine the application of the principles of Bayesian Credibility Theory in rating and ranking movies by a premier online movie database based on users votes. Although the Bayesian credibility theory was developed originally as a method to calculate the risk premium by combining the individual risk experience with the class risk experience, it is generic enough to deal with a wide range of practical applications quite different from the classical application mentioned above. One such diverse application of the theory in an unlikely domain will be discussed in this paper.
    Keywords: Credibility Theory; Prior distribution; Likelihood function; Posterior distribution; Loss function; Bayesian approach.

  • Determinants of Indian banks efficiency: A Two-stage approach   Order a copy of this article
    by Jayaraman A.R, Srinivasan M.R 
    Abstract: Analyzing the performance of banks at periodical intervals assumes importance from the perspective of bankers, investors and regulator. This study seeks to examine the cost, revenue and profit efficiency of Indian banks during 2004-2013 using Data Envelopment Analysis (DEA) and identifies the determinants of efficiency using Tobit regression. Results show that the cost and profit efficiency of banks are positively correlated and reveal that if the banks are cost efficient, they are also profit efficient. Further, profit efficiency is the better differentiator of performing and non-performing banks, in Indian context. The main determinants of efficiency of banks under cost, revenue and profit DEA models are size and management of the banks. Contrary to popular belief, the GDP growth has an inverse relationship with efficiency of the banks.
    Keywords: Bank; DEA; Cost Efficiency; Profit Efficiency; Tobit Regression.
    DOI: 10.1504/IJOR.2019.10010959
  • Analysis of an M/M/c Queue with Heterogeneous Servers, Balking and Reneging   Order a copy of this article
    by R. Sudhesh, A. Azhagappan 
    Abstract: This paper analyzes a heterogeneous multi-server queuing system with balking and reneging. In this system, when all the c servers are busy, an arriving customer decides either to join the queue with probability p or balk with probability 1 p. The customers waiting in the queue become impatient due to the long wait for service. Therefore, each individual waiting customer activates an independent impatience timer such that the customers service starts before his timer expires, he gets the service and leaves the system after the completion of service. Otherwise, he abandons the system and never returns. The time-dependent system size probabilities are derived explicitly using generating function. Further the time-dependent mean, variance, busy period distribution and steady-state probabilities are obtained. Finally, some numerical illustrations are presented.
    Keywords: M/M/c queue; heterogeneous servers; balking; reneging; transient probabilities; Busy period; Generating functions.

  • Solution of a sustainable bi-objective book-producers problem using statistical approach   Order a copy of this article
    by Adrijit Goswami, Snigdha Karmakar, Sujit Kumar De 
    Abstract: This article leads to statistical approach on bi-objective economic production quantity (EPQ) inventory problem especially on two book producers problem under unit selling price and production run time dependent demand rate. The concept of early product-early demand and low price-high demand policy has been employed for developing this bi-objective inventory problem. The discounts on marked unit selling price have been offered at the time of selling the books on spot for both the producers also. In this model we are optimizing the objective functions of both producers for this it is considered as bi-objective model. However, behind any computational process there might have the effects of extraneous variables for which we have used correlation approach to solve the model. In addition, we use Goal Attainment (GA) approach to solve the bi-objective problems first and then generate data set from sensitivity analysis of the model. Moreover, we compute the correlation coefficients matrix for both joint and independent relations of the objective functions. The decision is made on the basis of testing of hypothesis over the decision maker (DM)s zone of intelligence. Finally, the dot plots are made for justification of the model.
    Keywords: Bi-objective inventory; Discounts; Goal Attainment Method; Extraneous variables; Spearman’s correlation coefficient; Optimization.

  • Length Of Stay Reduction in the Emergency Department and its quantification Using Complex Network Theory   Order a copy of this article
    by Antonio Del Torto, Rossella Pozzi, Emanuele Porazzi, Elisabetta Garagiola, Fernanda Strozzi 
    Abstract: Overcrowding in Emergency Department (ED) has become an increasingly significant problem worldwide. Different crowding measures have been proposed in the literature and, between them, the Length of Stay (LOS) is one of the most recognised. In this paper the LOS in the ED of a Hospital located in the Southern central region of Italy is calculated; than the ED process is represented as a network and, due to the identification of the bottleneck node, possibilities to reduce the LOS through changes to the actual process can be identified. The present work demonstrates that the LOS reductions obtained by process changes and measured by the analytical LOS calculations can be assessed also through the changes in the topological properties of the activities network, that are measured using complex network measures.
    Keywords: network; emergency department; Length of Stay; overcrowding.
    DOI: 10.1504/IJOR.2019.10011175
  • Reliability appraisal for consecutive-k-out-of-n:F system of non-identical components with intuitionistic fuzzy set   Order a copy of this article
    by Akshay Kumar, S.B. Singh, Mangey Ram 
    Abstract: In this paper, the reliability of a linear (circular) consecutive k-out-of-n:F system of non-identical elements have been obtained with the help of intuitionistic fuzzy concept and Weibull lifetime distribution. The calculation of parameters of the Weibull distribution is presented by intuitionistic triangular fuzzy numbers. The Markov chain technique is employed to compute the reliability of the transition state of the system. A numerical example is also illustrated for demonstrating the reliability of the system.
    Keywords: Linear (Circular) (k; n:F) system; reliability; Weibull distribution; intuitionistic fuzzy numbers.

  • University course timetabling problem considering day and time pattern   Order a copy of this article
    by Chompoonoot Kasemset, Takashi Irohara 
    Abstract: The university course timetabling problem (UCTTP) is a timetabling problem faced by many educational institutes. The characteristics of the UCTTP of one university are different from those of another as these are dependent on the regulations of the particular institute. This study aimed to propose a new formulation for the UCTTP when a day and time pattern is introduced. The day and time pattern would be set by the university and all assigned courses should follow this pattern. The different points of the proposed formulation would structure the model using starting and ending timeslots instead of a single timeslot to deal with courses with consecutiveness, periodic repeat, and multi-period sessions. The formulation was developed, and then verified and validated using a small-size problem. To present the effectiveness of the proposed model, three test cases were solved and the results were compared with the general formulation of the UCTTP in terms of solution quality, the number of variables and constraints, and computational time using a commercial solver. The test results showed that the same optimal solution can be derived and the number of variables and constraints reduced with less computational time compared to the general formulation. Then, the case study was solved using the proposed formulation with multiple objectives based on goal programming (GP). The solution of the case study was compared with the current timetable. The results of the case study show that the number of assignments during the undesirable time was minimised and that the total satisfaction score of all the lecturers was improved by 7.95% by the proposed model.
    Keywords: university course timetabling; integer programming; goal programming; case study; day and time pattern.

  • Robust Optimization of Unconstrained Binary Quadratic Problems   Order a copy of this article
    by Mark Lewis, Gary Kochenberger, John Metcalfe 
    Abstract: In this paper we focus on the unconstrained binary quadratic optimization model, maximize x^t Qx, x binary, and consider the problem of identifying optimal solutions that are robust with respect to perturbations in the Q matrix.. We are motivated to find robust, or stable, solutions because of the uncertainty inherent in the big data origins of Q and limitations in computer numerical precision, particularly in a new class of quantum annealing computers. Experimental design techniques are used to generate a diverse subset of possible scenarios, from which robust solutions are identified. An illustrative example with practical application to business decision making is examined. The approach presented also generates a surface response equation which is used to estimate upper bounds in constant time for Q instantiations within the scenario extremes. In addition, a theoretical framework for the robustness of individual x_i variables is considered by examining the range of Q values over which the x_i are predetermined.
    Keywords: Robust Optimization; Unconstrained Binary Quadratic Problems; Upper Bounds; Business Decision Making; Scenario Generation; Experimental Design; Surface Response Equation; Sensitivity Analysis.

  • Increased Flexibility in Multi Echelon Multi Capacitated Supply Chain Network Design   Order a copy of this article
    by Sahand Ashtab, Richard Caron, Esaignani Selvarajah 
    Abstract: The multi echelon, multi capacitated supply chain network design challenge is to determine the numbers, locations and capacity levels of plants and warehouses; as well as the product flow from plants to warehouses and then from warehouses to customer zones in order to meet demand at minimum cost. Mathematical models for multi capacitated supply chain network design provide a finite set of capacity levels from which to choose; and include variables and constraints to ensure the selection of a single capacity level for each facility to be built. By eliminating the constraints that enforce a single capacity selection, we allow for the selection of several capacity levels for a single plant or warehouse. If such a selection occurs, the plant or warehouse is built with size equal to the sum of the selected capacity levels. This gives an exponential increase in the number of available capacity levels. The increased flexibility allows for less costly supply chain network designs. We present numerical results that demonstrate improved solutions, that is, lower cost solutions, with lower computational effort.
    Keywords: Facility planning and design; Supply chain network design; Facility location; Mixed integer linear program; Multi echelon; Multi capacitated.

  • Environmentally-adjusted efficiencies of Vietnamese Higher Education Institutions: A Multi-stage Bootstrap DEA Method   Order a copy of this article
    by Carolyn Tran, Renato Andrin Villano 
    Abstract: This paper analyses the operational efficiencies of Vietnamese higher education institutions (HEIs) after three decades of transition to the market-orientated economy. Using data from 112 universities and 141 colleges in the period 20112013, a new stage is proposed to integrate the bootstrap procedure into the environmentally-adjusted multi-stage DEA approach to measure the efficiencies of HEIs. The findings indicate that the efficiencies of HEIs are relatively low and are strongly affected by environmental variables, namely, ownership, location, age and financial capacity. Some managerial implications are discussed in improving the performance of HEIs.
    Keywords: Efficiency; data envelopment analysis; bootstrap; universities; colleges; Vietnam.

  • A New Method for Solving Linear Fractional Programming Problem with Absolute Value Functions   Order a copy of this article
    by Sapan Das, Tarni Mandal, S.A. Edalatpanah 
    Abstract: In this paper, we propose a new model for linear fractional programming problem with absolute value functions. The major contribution of this paper is that transformation of linear fractional programming problem into separate linear programming problems with some theorems and then solution of these problems by popular algorithm. This work also used to simplex type algorithms to arrive at an optimal solution for a linear programming problem with absolute value. Moreover, we compare this method with an existing method. Numerical experiments are also given to illustrate the assertions.
    Keywords: Fractional programming; computing science; absolute value; simplex method.

  • A Comprehensive Merit Aid Allocation Model   Order a copy of this article
    by Paul K. Sugrue 
    Abstract: This paper highlights the development of a merit-based financial aid allocation model for a large private university incorporating both yield rate prediction and optimal fund distributions. . The objective used in the optimal allocation is the average SAT score of the incoming class. In the application, the allocation decision is bound only by the financial aid budget and the number of accepted applicants in homogeneous SAT score groupings. Required yield rates are estimated utilizing logistic regression with SAT score and merit aid award levels as the exogenous variables. The parameter estimates are based upon data from the previous year. Comparing the actual result with the model result shows a 17.3 point increase in the mean SAT score, which is shown as equivalent to a 20% increase in the merit aid budget.
    Keywords: Financial aid; Yield rates; Merit based aid; Binary logistic regression; Linear programming.

  • MCGL: A New Reference Dependent MCDM Method   Order a copy of this article
    by Ram Kumar Dhurkari 
    Abstract: This paper proposes a method for discrete alternative multi-criteria decision-making (MCDM) under certainty. The proposed method (Multi Criteria Gain Loss: MCGL) is based upon the tenets of prospect theory and norm theory. The two major objectives for the development of the MCGL method are 1) to reduce the complexity of the MCDM in order to improve the performance of the decision maker (DM) in the process of judgment, and 2) to use some of the latest descriptive theories of decision making in order to improve the effectiveness of the MCDM method in terms of its resemblance with actual decisions. Two studies conducted to test the effectiveness of the proposed method in resembling actual or real decisions. In comparison to the Analytic Hierarchy Process (AHP), the MCGL method is able to capture individuals decision-making process more accurately. Applicability measures like the number of decisions required, time and the cognitive burden strongly favours the MCGL method.
    Keywords: Multi-Criteria Decision Making; Prospect Theory; Analytic Hierarchy Process.

  • Path anticipation and prioritized conflict-free train re-scheduling on a linear network   Order a copy of this article
    by Nitin Sakhala, Ajinkya Tanksale, Jitendra Jha 
    Abstract: Rail schedule may get disturbed due to unforeseen set of events, which requires a quick response to plan a new feasible schedule under the given set of complicating constraints, and resolving the potential conflicts among trains. This gives rise to the classical train timetable re-scheduling (TTR) problem, which is combinatorial in nature, computationally challenging. In this work, we present the macroscopic train orientation of TTR problem with explicit consideration of safety characteristics. In case of disturbances, path anticipation criteria are used to generate a feasible and conflict-free schedule. A novel algorithm based on inhibitor net to prioritizing trains and conflict-resolution is presented. We demonstrate the application of a decision support system with the controllers intervention for the considered problem. Finally, the proposed solution approach is tested for its efficiency on several test instances generated for a real-life case of a single line corridor in the Indian rail network.
    Keywords: Train re-scheduling; disturbance handling; conflict-resolution; Petri net.

  • Efficient Algorithms to Match GPS Data on a Map   Order a copy of this article
    by Renaud Chicoisne, Fernando Ordoñez, Daniel Espinoza 
    Abstract: Estimating the distribution of travel times on a transportation network from vehicle GPS data requires finding the closest path on the network to a trajectory of GPS points. In thiswork we develop 1)An efficient algorithm (MOE) to find such a path and able to detect the presence of cycles, and 2)A faster but less accurate heuristic (MMH) unable to detect cycles.We present computational results that compare these algorithms, for different sampling rates and GPS sensitivities, using GPS trajectories of three networks: a grid graph and street networks of Santiago and Seattle.We show that MOE (MMH) returns in seconds (hundredths of second) paths where on average 93% (91%) of the edges are within a corridor of one meter from the real path.
    Keywords: Map Matching; Travel Time Estimation.

  • An efficiency analysis of food distribution system through Data Envelopment Analysis   Order a copy of this article
    by Claudia Paciarotti, Maurizio Bevilacqua, Filippo Emanuele Ciarapica, Giovanni Mazzuto, Leonardo Postacchini 
    Abstract: The specific quality and safety requirements, typical of the food supply chain, force to strong action on implementing distribution networks, reducing transport and delivery costs, improving distribution efficiency and performance, increasing carriers control and flexibility. In this context, the selection and evaluation of third-party logistics has become a crucial aspect in order to realise an efficient food products distribution, with both a high level of service and competitive costs. This paper implements Data Envelopment Analysis theory to analyse the case of an Italian food producer, which distributes its products on the national territory, through several third-party logistic carriers. This study made possible to define the most efficient carrier among those responsible for the distribution process, analysing the retail trade and large-scale retail trade. This paper represents a reference guideline to all the food companies involved in the process of evaluation and improvement of the distribution process.
    Keywords: Data Envelopment Analysis; efficiency measurement; food supply chain; supply chain performance; third-party logistics; food deliveries evaluation; transport logistics; logistics performance; decision making units; carriers ranking; carriers selection; transport of perishable products.

  • Closed parasitic flow loops and dominated loops in networks   Order a copy of this article
    by Michael Todinov 
    Abstract: This paper raises awareness of the presence of closed parasitic flow loops in the solutions of almost every published algorithm for maximising the throughput flow in networks. These are highly undesirable loops of flow which effectively never leave the network. The paper also demonstrates the presence of dominated parasitic flow loops in the solutions based the time-honoured successive shortest path approach. It is shown that even in a network with multiple origins and a single destination, the successive shortest path strategy fails to minimise the total length of the routes if the capacity of the delivery channels is limited. The paper demonstrates that the probability of existence of closed and dominated parasitic flow loops in networks is surprisingly high. Accordingly, an algorithm for eliminating all dominated flow loops in large and complex networks is proposed.
    Keywords: parasitic flow loops; maximum throughput flow; successive shortest paths; multiple interchangeable origins; multiple destinations.

  • Scheduling batches with time constraints in wafer fabrication   Order a copy of this article
    by Giovanni Pirovano, Federica Ciccullo, Margherita Pero, Tommaso Rossi 
    Abstract: This work proposes and tests an algorithm for batching and dispatching lots along cleaning and diffusion operations of a wafer fab. These are characterized by (i) time constraints (i.e. the time between the end of an operation n and the start of the operation n+q must be lower than a time-limit, in order to guarantee the lots quality) and (ii) absence of batching affinity between operations. Literature so far has been falling short in proposing scheduling algorithms suitable for this context. Therefore, we propose two heuristic algorithms to minimize the average flow time and the number of re-cleaned lots, maximize machine saturation, and avoid scrapped lots. Discrete-event simulation was used to test the performance of the two algorithms using real data of STMicroelectronics. The formerly proposed model outperforms the latter. Therefore, STMicroelectronics implemented the former in its fab in Catania gaining an increase in the average Overall Equipment Effectiveness of 7%.
    Keywords: semiconductor manufacturing; dispatching rules; batch; scheduling; wafer fab; time constraints; diffusion; STMicroelectronics.

  • A Note on Min-Max Goal Programming Approach for Solving MultiObjective De Novo Programming Problems   Order a copy of this article
    by Susanta Banik, Debasish Bhattacharya 
    Abstract: Min-max goal programming approach for solving multiobjective De Novo Programming Problems was studied by Nurullah Umarusman in 2013.The present study is a further attempt to examine the approach and present an improved version of the approach. In Nurullahs method, each of the goal constraints are having both positive and negative deviation variables, whereas in the proposed approach only one deviation variable has been used. The method of solution has been illustrated with the numerical examples. The solution obtained by proposed method yields objective values which are better than those obtained by Nurullah for the same set of weights.
    Keywords: Optimal system design; De Novo programming; Min-max goal programming; Multi-objective Optimization.

  • A continuous approximation procedure for determining inventory distribution schemas within supply chains: Gradual and intermittent shipping patterns   Order a copy of this article
    by Faizul Huq, Trevor Hale, Nikhil Pujari 
    Abstract: The popularity of supply chain integration models are increasing. The research in this paper builds upon prior research and presents an integrated inventory supply chain optimization model that incorporates the issues of location, production, inventory, and transportation simultaneously. The objective of the current research is to determine the optimal number as well as the optimal size of shipments under a variety of production and shipping rate scenarios. Previous research in this area assumed instantaneous shipping. Herein, this assumption is generalized to include a non-instantaneous, gradual shipping pattern as well as staggered, more intermittent shipping pattern. These two more generalized shipping scenarios (each with several sub-scenarios) are investigated and closed form expressions for the optimal number and the optimal size of shipments for each scenario are obtained. A detailed numerical example is presented to demonstrate the efficacy of the approach.
    Keywords: Distribution system; inventory management; supply chain; continuous approximation; shipping pattern.

  • New Approach for Ranking Efficient DMUs based on Euclidean Norm in Data Envelopment Analysis   Order a copy of this article
    by M.E. Bolori, Shokorlla Ziyari, Ali Ebrahimnejad 
    Abstract: Data Envelopment Analysis (DEA) is a widely used technique for measuring the relative efficiencies of Decision Making Units (DMUs) with multiple inputs and multiple outputs. In many applications, ranking of DMUs is an important and essential procedure to decision makers in DEA, especially when there are extremely efficient DMUs. Basic DEA models usually give the same efficiency score for some DMUs. Hence, it is necessary to rank of all extreme DMUs. The motivation of this work is to propose an appropriate method in order to overcome the drawbacks in several methods for ranking DMUs based on the DEA concept. In the present paper, we propose a model for ranking extreme efficient DMUs in DEA by super efficiency technique and Euclidean norm (l2-norm). The presented method in this paper is able to overcome the existing obstacles in some methods. As regards, the proposed model is into nonlinear programming form, a linear model is suggested to approximate the nonlinear model.
    Keywords: Data Envelopment Analysis (DEA); Ranking; Efficiency; Extreme Efficient; Euclidean norm.

  • A Perturbation-based Approach for Continuous Network Design Problem with Link Capacity Expansion   Order a copy of this article
    by Robert Msigwa, Lu Yue, Li-Wei Zhang 
    Abstract: This paper formulates a continuous network design problem (CNDP) as a nonlinear mathematical program with complementarity constraints (NLMPCC), and then a perturbation-based approach is proposed to overcome the NLMPCC problem and the lack of constraint quali fications. This formulation permits a more general route cost structure and every stationary point of it corresponds to an global optimal solution of the perturbed problem. The contribution of this paper from the mathematical perspective is that, instead of using the conventional nonlinear programming methodology, the variational analysis is taken as a tool to analyze the convergence of the perturbation-based method. From the practical point of view, a convergent algorithm is proposed for the CNDP and employ the sequential quadratic program (SQP) solver to obtain the solution of the perturbed problem. Numerical experiments are carried out in both 16 and 76-link road networks to illustrate the capability of the perturbation-based approach to the CNDP with elastic demand. Results showed that the proposed model would solve a wider class of transportation equilibrium problems than the existing ones.
    Keywords: Continuous network design problem; Bilevel programming; Nonlinear mathematical program with complementarity constraints; Variational analysis; Perturbation-based approach.

  • On Multi-level Quadratic Fractional Programming Problem with Modified Fuzzy Goal Programming Approach   Order a copy of this article
    by Kailash Lachhwani 
    Abstract: This paper addresses new modified algorithm for solving multi-level quadratic fractional programming problem (ML-QFPP) based on fuzzy goal programming (FGP) approach with some major modifications in the traditional fuzzy goal programming technique suggested for multi-level multi objective linear programming problems (ML-MOLPPs). In this modified approach, suitable linear and non linear membership functions for the fuzzily described numerator and denominator of the quadratic objective functions of all levels as well as the control vectors of higher levels are respectively defined using individual optimal solutions. Then fuzzy goal programming approach is used for the achievement of highest degree of each of the membership goal by minimizing the negative deviational variables. The proposed modified algorithm simplifies the ML-QFPP by eliminating solution preferences by the decision makers at each level, thereby avoiding large computational difficulties associate with multi-level programming problems and decision deadlock situations. The aim of this paper is to present simple and efficient technique to obtain compromise optimal solution of ML-QFP problems with all major types of membership functions. Comparative analysis over the variation in the types of membership functions is also carried out with numerical example to show suitability of different membership functions in the proposed algorithm.
    Keywords: Multi-level Quadratic Fractional Programming; Fuzzy Goal Programming; Membership Function; Negative deviational variable; Compromise optimal solution.

  • Solving a class of multiobjective bilevel problems by DC programming   Order a copy of this article
    by Aicha Anzi, Mohammed Said Radjef 
    Abstract: In this paper, we consider a class of multiobjective bilevel programming problems in which the first level objective function is assumed to be a vector valued DC function and the second level problem is a linear multiobjective program. The problem is transformed into a standard single optimization problem by using a preference function. We give a characterization to the induced region and reformulate the problem as a problem of optimizing a function over the efficient set. Next, a well known representation of the efficient set is used which will allow to transform the problem, using an exact penalization, into a DC program. Finally, we apply the DC Algorithm to solve the resulting DC program.
    Keywords: Bilevel programming; multiobjective optimization; exact penalty; DC Algorithm; DC programming; preference function.

  • Gravitational Search Algorithm (GSA) based UPQC for Power Quality Improvement of WECS   Order a copy of this article
    by R. Anitha, S. Jeyadevi 
    Abstract: The design of merged presentation of Unified Power Quality Compensator (UPQC) and wind energy conversion system (WECS) is conscientious for extenuating the power quality (PQ) problems of distribution scheme in the work. The projected scheme is unruffled of WECS, sequences and shunt active power filters (APF) joined to DC link that is capable to compensate the voltage sag, swell, harmonics and voltage interruption. The inoculation of wind power into an electric grid gives the PQ problems and these are perceived. Currently, the recompense approach of UPQC is examined with GSA. Here, GSA is engaged to enhance the control pulses of UPQC. The expected technique time-honoured the optimal control pulses of the sequences and shunt active power filter (APF) on the basis of the source side and load side qualities. These qualities are engaged to the inputs of the predicted algorithm and the error values are ballpark from the source side and load side parameter. To acquire optimal performance of the distribution system, these faults are diminished and producing the optimal control signals. The expected scheme is capable to bring in the active power to grid also its competence in augmentation of power quality in distribution scheme. The presentation of the expected GSA based UPQC scheme is corroborated over simulations by MATLAB/SIMULINK and compared with the traditional approaches such as adaptive neuro-fuzzy inference system (ANFIS) based UPQC and genetic algorithm (GA) based UPQC. The simulation solutions are portrayed for valuation of various control approaches and by performing FFT scrutiny Total Harmonic Distortions (THD) are calculated.
    Keywords: UPQC; GSA; ANFIS; GA; series & shunt APF; voltage; current; real and reactive power.
    DOI: 10.1504/IJOR.2020.10012677
  • Hybrid Approach for a Reliable buffer-less OBS Network with Reduced end-to-end delay and Burst loss   Order a copy of this article
    by Bharathi Lakshmanan, Sasikala Ramasamy, Srinivasan Alavandar 
    Abstract: Optical Burst Switching (OBS) is a very efficient all optical transmission network. But the performance of the network may reduce because of the burst losses. Hence to eliminate the collision and dropping of packets at the core nodes we have proposed a Hybrid approach for a reliable buffer-less OBS network known as an Enhanced Multipath Adaptive Burst Assembly Algorithm (EMP-ABAA). In this technique based on the priority and type of users (i.e. regular users with lesser priority and premium users with high priority), data packets are routed efficiently. At the core nodes the relative drop in data packet, delivery ratio, delay and energy consumption is evaluated in comparison with FAHBA approach. From the simulation results, using NS2 simulation, it is observed that the proposed approach outperforms FAHBA approach; hence enhancing the efficiency and reliability of the OBS network with lesser overhead utilization in the network.
    Keywords: OBS; Core nodes; Latency; Fuzzy logic; Routing.

  • Solutions of multiple objective linear programming problems by applying T-sets in imprecise environment   Order a copy of this article
    by Arindam Garai, Palash Mandal, Tapan K. Roy 
    Abstract: In this paper, technique to find Pareto optimal solutions to multiple objective linear programming problems under imprecise environment is discussed. In 2015, Wu et al redefined membership functions of fuzzy sets.. But under uncertainty, we observe that prime intention of maximizing up-gradation of most misfortunate is better served by removing some constraints from mathematical models, which are obtained by applying existing fuzzy optimization technique. Further in existing fuzzy optimization technique, membership functions are not utilized as per definitions. Moreover, in existing fuzzy optimization technique, some constraints may make model infeasible. Consequently, here, new function viz. T-characteristic function is introduced to supersede membership function and subsequently new set viz. T-set is introduced to supersede fuzzy set for representing uncertainty. And one general algorithm is developed to find Pareto optimal solutions to multiple objective linear programming problems by applying newly introduced T-sets. Numerical examples further illustrate proposed algorithm. Finally conclusions are drawn.
    Keywords: Decision making under uncertainty; Fuzzy sets; Fuzzy mathematical programming; Multiple objective linear programming; Pareto optimal solutions; T-characteristic functions; T-sets.

  • Power Quality Improvement by UPQC Using ANFIS Based Hysteresis Controller   Order a copy of this article
    by R. Manivasagam, R. Prabakaran 
    Abstract: In this paper, an adaptive neuro fuzzy interference system (ANFIS) that is based on hysteresis controller is being proposed for achieving the power quality improvement. The innovatory ideas behind this methodology are the smoothness obtained with the fuzzy interpolation and the adaptability for complex problems using the neural network back propagation. In addition, the neural network renders increased control over the output voltage of the series active power filter (APF) and the output current of the shunt APF too. Here, the ANFIS is trained using the target control signals of both the series APF as well as the shunt APF and with the corresponding input source side and load side parameters of the system. During the testing time, the UPQC is controlled using the control signals that are attained from the ANFIS. With the utilization of the proposed method, the voltage and the current perturbations are reduced and the system power quality is enhanced. The MATLAB/Simulink platforms are used to execute the proposed control technique and the presentation is examined using different types of source voltage fault conditions. The effectiveness of the proposed ANFIS based controller is analyzed through the comparison analysis with the conventional control techniques.
    Keywords: UPQC; ANFIS; power quality; series APF; shunt APF; voltage; current.
    DOI: 10.1504/IJOR.2020.10013133
  • On the Existence of a Finite Linear Search Plan with Random Distances and Velocities for a One-Dimensional Brownian Target   Order a copy of this article
    by Mohamed El-Hadidy 
    Abstract: In this paper, we consider a linear search model that takes into consideration the velocities and the distances which the searcher do them are independent random variables with known probability density functions (PDFs). The searcher moves continuously along the line in both directions of the starting point (origin of line). We use the Fourier-Laplace representation to give an analytical expression for the density of the random distance in the model. Also, we get the conditions that make the expected value of the first meeting time between the searcher and the target is finite.
    Keywords: Linear search problem; Finite search plan; One-dimensional Brownian motion; Fourier-Laplace transform.

  • Performance of MIMO-OFDM Systems   Order a copy of this article
    by K. Vidhya 
    Abstract: Orthogonal Frequency Division Multiplexing (OFDM) is one of the new modulation techniques which is used to combat the frequency-selectivity of the transmission channel models achieving high data rate without intersymbol interference. OFDM may be combined with antenna arrays at the transmitter and receiver to increase the system capacity on time-variant and frequency-selective channel models resulting in a multiple-input multiple-output (MIMO) configuration. In this paper, SISO, SIMO, MISO and MIMO-OFDM configurations of OFDM systems are proposed. LS channel estimator is used to calculate the channel coefficients. The four different OFDM systems are analyzed and simulated. The simulation consists of four parameters namely bit error rate, mean square error, symbol error rate and capacity of the channel for MIMO-OFDM systems. The error rate values are minimized in 2x2 MIMO-OFDM systems compared to other 1x1, 1x2, 2x1 OFDM systems. Similarly channel capacity is maximized in 2x2 MIMO-OFDM systems, compared to the other OFDM systems. These performances are implemented using MATLAB software.
    Keywords: multiple-input multiple-output; OFDM systems; SISO; SIMO.
    DOI: 10.1504/IJOR.2020.10012756
  • Fuzzy Reliability Redundancy Optimization with Signed Distance Method for Defuzzification Using Genetic Algorithm   Order a copy of this article
    by Sanat Kumar Mahato, Nabaranjan Bhattacharyee, Rajesh Paramanik 
    Abstract: Consideration of impreciseness is more realistic for modeling of physical phenomena. This impreciseness can be considered in several ways like, interval/stochastic/fuzzy or mixture of these. In this work, we have taken for optimizing of the system reliability of a redundancy allocation problem formulated from a complex network system with imprecise parameters in the form of trapezoidal fuzzy numbers (TrFN). The signed distance method has been used to defuzzify the fuzzy values. Then Big-M penalty technique is used to transform the problem to unconstrained optimization problem. To solve these problems, we have implemented the real coded elitist genetic algorithm (RCEGA) for integer variables with tournament selection, intermediate crossover and one neighborhood mutation. For illustration, the five link bridge network system has been solved and the results have been presented.
    Keywords: Reliability-redundancy allocation; Imprecise environment; Genetic Algorithm; Fuzzy number; Defuzzification; Signed distance method; Penalty function.

  • Design optimization of vehicle suspension systems using artificial intelligent techniques   Order a copy of this article
    by Vivek Kalyankar, Ajinkya Musale 
    Abstract: Suspension system plays important role in automobiles and to some extent it is treated as backbone of vehicles. Design of suspension systems present challenges because of different conflicting criterias and hence, optimum design of its parameters is essential to get better ride comfort. Important design parameters involved in suspension systems are un-sprung mass, sprung mass, tire stiffness, spring stiffness, suspension damping coefficient, etc.; and obtaining optimum design combination of all these parameters is only possible with the use of appropriate optimization techniques. This article presents the summary of various optimization techniques used by previous researchers for design optimization of suspension systems. It is observed that, despite having various evolutionary optimization techniques, most of the earlier work was surrounded with traditional methods and genetic algorithm. Hence, a better performing algorithm compared to those, is demonstrated here to prove, uses of appropriate algorithm will help to improve the performance of suspension systems. A swarm based artificial bee colony algorithm is considered here to achieve optimum design and it is demonstrated with two examples having different road conditions. Results obtained shows considerable improvement in the design of suspension system thereby achieving a better ride comfort when compared with the results of previous researchers.
    Keywords: Design optimization; ABC algorithm; Vehicle model; Degree of freedom; Suspension system; Ride comfort.

  • An Extended Multi-Objective Capacitated Transportation Problem with Mixed Constraints in Fuzzy Environment   Order a copy of this article
    by Srikant Gupta, Irfan Ali, Aquil Ahmed 
    Abstract: In this paper, we study a multi objective capacitated transportation problem (MOCTP) with mixed constraints. This paper is comprised of the modeling and optimization of a MOCTP in fuzzy environment in which some goals are fractional and some are linear. In real life application of the fuzzy goal programming problem with multiple objectives, it is difficult for the decision maker(s) to determine the goal value of each objective precisely as the goal values are imprecise or uncertain. Also, we developed the concept of linearization of fractional goal for solving the MOCTP. In this paper imprecision of the parameter is handled by the concept of fuzzy set theory by considering these parameters as trapezoidal fuzzy number. α cut approach are used to get the crisp value of the parameters. Numerical examples are used to illustrate the method for solving MOCTP.
    Keywords: Capacitated Transportation Problem; Multi Objective Linear Programming; Multi Objective Fractional Programming; Mixed Constraints; Trapezoidal Fuzzy Number; Fuzzy Goal Programming.

  • Multi-Objective Fixed-Charge Transportation Problem Using Rough Programming   Order a copy of this article
    by Sudipta Midya, Sankar Kumar Roy 
    Abstract: This paper analyzes the Multi-Objective Fixed-Charge Transportation Problem (MOFCTP) using rough programming. Due to globalization of market, the parameters of MOFCTP may not be defined precisely, so the parameters of the MOFCTP are treated as rough intervals. Expected value operator is used to convert rough MOFCTP to deterministic MOFCTP. Fuzzy programming method and linear weighted-sum method are used to obtain Pareto-optimal solution from deterministic MOFCTP. A comparative study is made between the obtained solutions extracted from the methods; and thereafter we perform a procedure to analyze the sensitive analysis of the parameters in MOFCTP. Finally, in order to show the applicability of our proposed study, an example on MOFCTP is included in this paper.
    Keywords: Fixed-charge transportation problem; Rough programming; Fuzzy programming; Multi-objective programming; Pareto-optimal solution.

  • On exact solution approaches for concave knapsack problems   Order a copy of this article
    by Stephan Visagie, Liezl Van Eck 
    Abstract: This paper introduces five characteristics of concave knapsack problem (CKP) instances that influence computational times of algorithms. A dataset, based on these characteristics, is randomly generated and made available online for future studies and comparison of computational times. In this study the dataset is used to compare the computational performance of two integer programming formulations and four algorithms to solve CKPs. A novel algorithm (BLU) that combines the logic of dynamic programming and the Karush-Kuhn-Tucker necessary conditions for the CKP is also introduced. The computational times for the two integer programming formulations were too long and were thus excluded from the statistical analysis. Analysis of the computational times shows that algorithms are sensitive to different characteristics. Any algorithm, depending on the settings of the five characteristics, could win in terms of average computational time, but BLU outperforms the other algorithms over the widest range of settings for these characteristics.
    Keywords: Concave knapsack problem; branch-and-bound; dynamic programming; comparison of algorithms.

  • Intuitionistic fuzzy zero point method for solving type-2 intuitionistic fuzzy transportation problem   Order a copy of this article
    by Senthil Kumar 
    Abstract: In conventional transportation problem, supply, demand and costs are fixed crisp numbers. Therefore in this situation the decision- maker (DM) can predict transportation cost exactly. On the contrary, in real world transportation problems the costs are in uncertain quantities with hesitation due to various factors like variation in rates of fuels, traffic jams, weather in hilly areas etc. In such situations the DM cannot predict transportation cost exactly and it will force the DM to hesitate. So, to counter these uncertainties, in this article, the author designed a transportation problem in which supplies, demands are crisp numbers and cost is intuitionistic fuzzy number. This type of problem is termed as type-2 intuitionistic fuzzy transportation problem (type-2 IFTP). Hence to deal with uncertainty and hesitation in transportation problem, intuitionistic fuzzy zero point method is proposed to find out optimal solution to the type-2 IFTP. Moreover, special kind of type-2 IFTP is proposed and its related theorems are proved. Finally, the ideas of the proposed method are illustrated with the help of numerical example which is followed by the results and discussion.
    Keywords: Intuitionistic Fuzzy Set; Triangular Intuitionistic Fuzzy Number; Trapezoidal Intuitionistic Fuzzy Number; Type-2 Intuitionistic Fuzzy Transportation; Intuitionistic Fuzzy Zero Point Method; Optimal Solution.

  • Supply chain management under product demand and lead time uncertainty   Order a copy of this article
    by Joaquim Jorge Vicente, Susana Relvas, Ana Paula Barbosa-Póvoa 
    Abstract: This paper considers a multi-echelon inventory/distribution system formed by N-warehouses and M-retailers that manages a set of diverse products within a dynamic environment. Retailers are replenished from regional warehouses and these are supplied by a central distribution entity. Transshipment at both regional warehouses and retailers levels is allowed. A mixed integer linear programming model is developed, where product demand at the retailers is assumed to be unknown. The problem consists of determining the optimal reorder policy by defining the new concept of robust retailer order, which minimizes the overall system cost, including ordering, holding in stock and in transit, transportation, transshipping and lost sales costs while guaranteeing service level. The proposed model is extended to address simultaneously uncertainty in both products demands and replenishment lead times. A case study based on a real retailer distribution chain is solved.
    Keywords: Distribution; inventory planning; mixed integer linear programming; uncertainty; scenario planning approach.

  • On multi-state two separate minimal paths reliability problem with time and budget constraints   Order a copy of this article
    by Majid Forghani-Elahabad, Nezam Mahdavi-Amiri, Nelson Kagan 
    Abstract: In a stochastic-flow network, a (d, T, b, P1, P2)-MP is a system state vector for which d units of flow can be transmitted through two separate minimal paths (SMPs) P1 and P2 simultaneously from a source node to a sink node satisfying time and budget limitations T and b, respectively. Problem of determining all the (d, T, b, P1, P2)-MPs, termed as the (d, T, b, P1, P2)-MP problem, has been attractive in reliability theory. Here, some new results are established for the problem. Using these results, a new algorithm is developed to find all the (d, T, b, P1, P2)-MPs, and its correctness is established. The algorithm is compared with a recently proposed one to show the practical efficiency of the algorithm.
    Keywords: Stochastic quickest path reliability problem; Transmission time; Budget constraint; Minimal paths (MPs); (d; T; b; P1; P2)-MP.

  • On gH-differentiable harmonic invex fuzzy mappings and its applications   Order a copy of this article
    by Sunita Chand, Minakshi Parida 
    Abstract: In this paper, we have introduced harmonic invex (H-invex) and harmonic incave (H-incave)fuzzy mappings by using the concept of gH-differentiability and many important results are obtained related to pseudoinvex (pseudoincave), quasiinvex (quasiincave), H-preinvex (H-preincave),η-monotone, η-dissipative, pseudoinvex monotone and pseudoincave dissipative fuzzy mappings. We have justified our results with suitable examples. Furthermore we have also applied gH-differentiable H-invex fuzzy mappings to study the KKT conditions for\r\nHarmonic invex fuzzy programming problem (HIFP), duality results and minmax problem.
    Keywords: Fuzzy optimization; H-invex (H-incave) fuzzy mappings; KKT conditions;\r\nDuality results; Minmax problem.

  • An inventory system with Retrial demands, Multiple vacations and Two Supply Modes   Order a copy of this article
    by Anbazhagan Neelamegam, Kathiresan J 
    Abstract: This paper analyzes a continuous review inventory system with single server, multiple vacations, Poisson demand, retrial demand, exponential distributed lead time and two supply modes for replenishment with one having a shorter lead time. To derive the stationary distribution of the system, we employ the Gavers method. After computing various system performance measures, some cost minimization numerical results are presented.
    Keywords: {Continuous review inventory system; Positive leadtime; Retrial demand; Multiple vacations; Two supply modes.

  • A Co-operative Combined Defense Technique for Jamming Attack in MANET   Order a copy of this article
    by A. Jayanand 
    Abstract: Mobile ad hoc networks (MANET) consist of continuously mobile nodes in the network. Due to this dynamic nature of the network, new nodes keep joining the network and some nodes exit the network every now and then. As a result, keeping track of every node in the network is not possible. So, malicious nodes like jammers can easily enter the network and affect the efficiency of the network. Hence, in this paper, we develop a co-operative combined defense technique for detecting jamming attacks in the MANET by determining the presence of jammers in the network. This is achieved by combining several important factors like Correlation coefficient, Carrier Sensing Time, Packet Delivery Ratio (PDR) and signal strength (SS). Then a trust model is derived for each node and updated based on these measured parameters. Each node collaboratively checks the updated trust values of a suspected node and detects the jamming attack. Simulation results show that the proposed technique improves the detection accuracy and packet delivery ratio.
    Keywords: Mobile ad hoc networks; Packet Delivery Ratio; signal strength; Jamming Attack.
    DOI: 10.1504/IJOR.2020.10013838
  • Steady State Analysis of Fluid Queues Driven by Birth Death Processes with Rational Rates   Order a copy of this article
    by Shruti Kapoor, Dharmaraja Selvamuthu 
    Abstract: Birth death processes with rational birth death rates have been studied by Maki [9]. This paper analyzes the steady state behavior of a fluid queue driven by a finite birth death process with rational birth and death rates. Two specific models are considered and closed form solutions are obtained for the equilibrium distribution of the buffer occupancy by finding the explicit eigenvalues of the underlying tridiagonal matrix. Numerical illustration is presented for different values of the size of the state space of the background process and for different values of the parameter involved.
    Keywords: Fluid queue; stationary distribution; eigenvalues; tridiagonal matrices.

  • Hierarchical MAC protocol With Adaptive Duty-cycle Adjustment Algorithm for Wireless Sensor Network   Order a copy of this article
    by C. Venkataramanan, S.M. Girirajkumar 
    Abstract: In wireless sensor networks (WSNs), the existing routing algorithms causes increased energy utilization and minimizes the lifetime of the network. In order to conquer this problem, in this paper, an adaptive duty-cycle adjustment algorithm based on the traffic and channel condition is put forwarded. Initially, the node with higher weight value is chosen as cluster head, the value is calculated from residual energy and delay between the successive transmissions. After the cluster formation, the relay nodes are selected by their remaining battery energy and the channel state in the network for the data transmission. Based on the relay nodes found, the network traffic is controlled by the traffic adaptive duty-cycle. In this approach, the heads of each cluster collects traffic information from member nodes and computes appropriate duty cycle according to current traffic, and then the resulting duty cycle information conveyed to normal nodes. The node then executes the data transmission based on the duty cycle. Our results revealed that the proposed approach minimizes the energy utilization and enhances the network lifetime too.
    Keywords: wireless sensor networks; MAC protocol; adaptive duty-cycle.

  • Systems Reliability Assessment Using Hesitant Fuzzy Set   Order a copy of this article
    by Akshay Kumar, S.B. Singh, Mangey Ram 
    Abstract: The present study deals with fuzzy reliability evaluation series, parallel and linear (circular) consecutive k-out-of-n:F systems. Fuzzy reliability of series, parallel systems have been evaluated to help of hesitant fuzzy sets and triangular fuzzy number, whereas fuzzy reliability of linear (circular) consecutive k-out-of-n: F systems have been determined with the help of application of Weibull distribution and Markov process in comporting hesitant fuzzy sets and triangular fuzzy number. Numerical examples are also provided to demonstrate the effectiveness of the proposed approach.
    Keywords: Series system; Parallel system; Weibull distribution; Linear (circular)(k; n: F) system; Hesitant fuzzy set; Hesitant fuzzy weighted averaging operator.

    by Harrison O. Amuji, Fidelis I. Ugwuowo, Walford I. Chukwu, Peter. I. Uche 
    Abstract: We have developed a new method of solving geometric programming problems with as many positive degrees of difficulties as possible. Geometric programming has no direct solution whenever its degrees of difficulties are greater than zero; this has hindered the development of geometric programming and discouraged so many researchers into the area. The indirect solution, which has been in existence, involves the conversion of geometric programming problems to linear programming, separable programming, augmented programming etc. These conversions make the beauty of geometric programming to be lost and also terminate the existence of geometric programming. The newly developed method (Modified generalized inverse method) consistently produces global optimal solutions; satisfies the orthogonality and normality conditions; optimal objective function; and produce optimal primal and dual decision variables which satisfy the optimal objective function. The method was applied on some positive degrees of difficulty geometric programming problems and the results compare to the results from existing methods. The method was validated by some proposition; corollary and lemma. With this breakthrough, geometric programming problems can be modeled and solved without restrictions.
    Keywords: Exponent matrix; Degree of difficulty; generalized inverse; Primal decision variables; Dual decision variables; Objective function.

  • A multi-objective approach for locating temporary shelters under damage uncertainty   Order a copy of this article
    by Ashish Trivedi, Amol Singh 
    Abstract: Every year, natural disasters such as earthquakes, hurricanes, landslides, etc. kill thousands of people and destroy habitats and assets worth millions-of-dollars. Choice of temporary shelter areas and subsequent relocation of homeless people play a crucial role in post-earthquake relief operations. This paper proposes a multi-objective location-relocation model based on goal programming approach considering uncertainties of damage to infrastructure due to earthquakes. The model considers multiple objectives of risk, number of sites, unmet demand & qualitative suitability of locations and generates solutions under different scenarios of damage. A numerical illustration is also presented to demonstrate the applicability of proposed approach in solving the decision problem.
    Keywords: Disaster; Goal programming; Humanitarian logistics; shelter site selection; uncertainty.

  • Multi-criteria Approach for Platelet Inventory Management in Hospitals   Order a copy of this article
    by Suchithra Rajendran, A. Ravi Ravindran 
    Abstract: In this paper, a multiple criteria approach is proposed for platelet inventory management in hospitals. It has been reported that about 20% of the total platelet collected is outdated due to the short shelf life of platelets and demand uncertainty. A multiple criteria mathematical programming (MCMP) model is developed to minimise platelet wastage, shortage, and procurement and holding cost. A case study is discussed by applying the model to the daily demand data of platelets at a New York hospital. The MCMP problem is solved using three MCMP techniques; preemptive goal programming (PGP), non-preemptive goal programming (NPGP) and weighted objective methods (WOM). Managerial implications of the optimal solutions are discussed. Sensitivity analysis is also performed to analyse the impact of goal priorities in the PGP model and weights in the NPGP model and WOM. Based on the policies obtained under PGP, NPGP and WOM methods, the hospital management can decide the most suitable inventory policy for implementation.
    Keywords: Platelet inventory management; multiple criteria mathematical programming; preemptive goal programming; non-preemptive goal programming; weighted objective methods; sensitivity analysis.

  • A Comparative Analysis between LINMAP, Paired Comparison Method and Naturalistic Ranking in Different Data Display Contexts   Order a copy of this article
    by Hanane Taffahi, David Claudio 
    Abstract: This article presents a comparative analysis between two widely used decision-making methods, LINMAP and Paired Comparison Method (PCM), using three different judging contexts. Decision makers ranked alternatives (for LINMAP) and criteria (for PCM) for contexts involving quantitative data only, qualitative data only, and a mix between the two. Attribute weights were calculated and final rankings of alternatives were deducted and compared to a naturalistic ranking of alternatives by the decision makers. LINMAP was found to be the closest match to a naturalistic decision-making. It was also found that incorporating qualitative data or a mixture between qualitative and quantitative data in multi-attribute decision-making problems was more consistent with the naturalistic ranking of alternatives.
    Keywords: LINMAP; Paired Comparison Method; Naturalistic Ranking; quantitative data; qualitative data; multi-attribute decision-making.

  • Unreliable Server Retrial G-Queue with Bulk Arrival, Optional Additional Service and Delayed Repair   Order a copy of this article
    by Charan Jeet Singh, Sandeep Kaur, Madhu Jain 
    Abstract: The retrial bulk arrival queue with unreliable server and negative customers is considered. On arrival of the group of customers, one of the customers gets the service immediately if the server is idle and other customers join the retrial orbit. There is a provision to opt additional service after completion of the essential service of the customers. The server may fail due to arrival of negative customers during any stage of the service. After completion of the service, the customer may again join the queue as a feedback customer to get another regular/optional service or depart from the system. The non-persistent (impatient) phenomenon also occurs because of the delayed in repair/ repair time of the failed server. By using the supplementary variable approach, various measures of queueing and reliability characteristics are analyzed. To facilitate the comparative study of the performance metrics of the system, the maximum entropy principle is used. The numerical results for various performance indices and optimal cost are obtained.
    Keywords: Unreliable server; Retrial queue; Non-persistent; Supplementary variable; Feedback; Optional service.

  • A Review of Job shop Scheduling Problems in Multi-Factories   Order a copy of this article
    by Imen Chaouch, Olfa Belkahla, Khaled Ghedira 
    Abstract: The Distributed Job shop Scheduling Problem (DJSP) deals with the assignment of jobs to factories geographically distributed and with determining a good operation schedule of each factory. It is one of the well-known NP-hard combinatorial optimization problem to solve optimally. In the last two decades, the problem has captured the interest of a number of researchers and therefore various methods have been employed to study this problem. In this paper, we first present an overview of pioneer studies conducted on solving Distributed Job shop Scheduling Problems and a classification of the employed techniques is given. Then, depth analysis of the outcome of existing literature is presented.
    Keywords: Distributed Scheduling; Job shop; Flexible Job shop; Optimization method; Survey.

  • A graph theoretic-based approach to distribution network planning with routes interaction regarding the fix-charge transportation problem   Order a copy of this article
    by Babak H. Tabrizi, Masoud Rabbani 
    Abstract: This paper aims to take distribution network planning problem into consideration, since a well-configured network can provide an appropriate platform for effective and efficient management of the set. The fix-charge transportation approach is addressed here to account for the problem. Hence, a non-linear mixed-integer programming model is proposed to minimize the configuration costs, in addition to the routes interaction consideration. Likewise, a graph theoretic-based methodology, i.e., the minimum spanning tree concept, is pursued by the Pr
    Keywords: Distribution network configuration; spanning tree; genetic algorithm; simulated annealing algorithm.

  • Bank oligopoly competition analysis using a differential equations model   Order a copy of this article
    by Miltiadis Chalikias, Panagiota Lalou, Michalis Skordoulis, Perikles Papadopoulos, Stavros Fatouros 
    Abstract: The purpose of this paper is to propose a model of differential equations that will be able to be applied in a bank oligopoly competition case. The differential equations model will be based on Lanchesters combat model, a well-known mathematical theory of war. Due to the fact that an oligopoly of four banks will be examined, the proposed model will consist of a 4x4 differential equations system. Many researchers have already concluded that mathematical theories of war models can be successfully applied to business cases as there are many similarities between the battle fields and the business competition. Since the proposed models predictions concern the deposits evolution, this model can contribute in the analysis of the competition between the four major banks in Greece. The statistical analyses carried out confirm the models good fit.
    Keywords: Operations research; Lanchester combat model; differential equations; oligopoly; bank competition; banking sector.
    DOI: 10.1504/IJOR.2020.10016423
  • Optimal Sourcing Policies for Single and Multiple Period Scenarios   Order a copy of this article
    by Shantanu Shankar Bagchi, A.K. Rao 
    Abstract: Determining the optimum number of suppliers and the optimum quantities to order from each of them is a critical problem for any supply chain. The objective of this paper is to identify the optimal sourcing policy of a retailer for single and multi-period context when the firm can source its order to multiple suppliers along with a back-up supplier for emergency situations. The expected total profit is mathematically modeled for single and multi-period scenarios. The optimal sourcing policy is obtained by maximizing the expected total profit with respect to the order quantities. Closed form solution is obtained for uniformly distributed demand for both single and multi-period scenarios. It is observed that the multi-period solution is less sensitive compared to the single-period solution. Also it is found that it is optimal for the firm to lessen the amount of supplier diversification in case of planning for multiple periods.
    Keywords: Sourcing; Supplier yield; Stochastic model; Demand uncertainty; Supply uncertainty; Optimization.

  • Genetic Algorithm for Quadratic Assignment Problems: Application of Taguchi Method for Optimization   Order a copy of this article
    by T.G. Pradeepmon, Vinay V. Panicker, R. Sridharan 
    Abstract: Quadratic Assignment Problems (QAPs) are the hardest of combinatorial optimization problems, with some problems of sizes of the order of 30 still remaining unsolved optimally. Solving QAPs with exact optimization methods is cumbersome and hence, the use of non-conventional optimization methods is recommended. Genetic Algorithm (GA) being one of the most popular evolutionary algorithms is an appropriate choice for solving QAPs. The methods of operations used in GA influence the solution quality and thus, an optimal combination of parameters and operators are required for the efficient implementation of the algorithm. In this paper, the Taguchis design of experiments method is used to find the best parameter combination and the best performing combination of operations for GA. The GA thus obtained by incorporating the selected parameter values and operators is then used for solving the QAPs taken from the QAP Library. For many of the problems, it is found that the results obtained are within one percentage deviation from the best-known solutions.
    Keywords: Quadratic Assignment problem; Genetic Algorithms; Taguchi’s design of experiments method; optimization of operations and parameters.

  • A Hybrid Approach of NSGA-II and TOPSIS for Minimizing Vibration and Surface Roughness in Machining process   Order a copy of this article
    by Zeelanbasha Noor Basha, Senthil Vellimalai, Mahesh Gopal 
    Abstract: Increasing vibration amplitude during end milling process can seriously affect the life of end mills and reduces surface finish. Spindle and worktable vibration has a significant influence on surface quality of machined components. This paper confronts and investigates the effect of machining and geometrical parameters (spindle speed, feed rate, axial depth of cut, radial depth of cut and radial rake angle) on spindle and worktable vibration in terms of acceleration amplitude and surface roughness. Experiments were conducted on aluminium alloy 6061-T6 with High-Speed Steel (HSS) end mill cutter based on the Central Composite Design (CCD). Response Surface Methodology (RSM) was used to develop the predictive models and the adequacy of the models were verified using Analysis of Variance (ANOVA). Non-Dominated Sorting of Genetic Algorithm (NSGA-II) was adopted to solve the multi objective optimization problem and the optimized results were resulted with a set of Pareto-optimal solutions. The Multi Criteria Decision Making method (MCDM) such as Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Analytical Hierarchy Process (AHP) were designed to rank the Pareto optimal solutions based on response of closeness coefficient values. The result shows that the average surface roughness can be minimized while the spindle and worktable vibrations are reduced in a simultaneous manner.
    Keywords: Aluminium Alloy; Decision making; End Milling; Machining; NSGA-II; Optimization; Prediction; TOPSIS.
    DOI: 10.1504/IJOR.2020.10008720
  • Routing vehicles through cross-docking facility for third party logistics service providers   Order a copy of this article
    by M. Birasnav, S. Kalaivanan, A. Ramesh, Rajendra Tibrewala 
    Abstract: This study focuses on a specialized Vehicle Routing Problem (VRP) to transport matchboxes from manufacturing companies to retailers through a cross-dock (cross-docking facility) operated by a third party logistics service provider. Three processes (unloading, consolidating, and loading) are carried out at a cross-dock for completely avoiding or keeping inventory for a very short time. The specialized VRP, addressed in this paper, consists of multiple suppliers (each supplier can produce different brands of products for any number of customers) and multiple customers (each customer can receive orders from any number of suppliers). A mixed integer linear programming model has been developed to solve this kind of NP-hard problem. The objective of this model is to minimize total cost incurred in picking up and transporting the matchboxes from the manufacturers to cross-dock, consolidating matchboxes at cross-dock, and in transporting and delivering the matchboxes to the customers. This study also proposes an effective heuristic procedure to solve the same problem and compares the solution obtained using the heuristic procedure to the optimal solution obtained using the exact method. The findings show that the heuristic method, proposed by us, generates near optimum solutions using significantly less computational time than the exact method.
    Keywords: vehicle routing; cross-docking; NP-hard; heuristic; logistics service provider; consolidating; multiple suppliers; multiple customers.

  • Winsorize tree algorithm for handling outlier in classification problem.   Order a copy of this article
    by Chee Keong Ch'ng, Nor Idayu Mahat 
    Abstract: Tree classification has been widely used nowadays for providing users supports in classification and prediction. Having outliers in a data set is inevitable, but ignoring the outliers may distort the size and accuracy of the tree as the outliers could affect a splitting point along the process of tree construction. This paper tackles the issue by proposing a winsorize tree algorithm that performs a process of detecting and handling the outliers while constructing a tree in all non-terminal nodes. Empirical results based on seven real data sets provide evidences that the proposed algorithm performs as good as or even better than the classical tree and pruned tree.
    Keywords: winsorize tree algorithm; gini index; error rate; classification; outlier; classification and regression tree (CART); winsorized tree.

  • Location-Allocation Models for Healthcare Facilities with Long Term Demand   Order a copy of this article
    by Ruilin Ouyang, Tasnim Ibn Faiz, Md. Noor-E-Alam 
    Abstract: Facility location decisions are long term commitments that manufacturing and service industries require to make in accordance with their vision statement, competitive strategies, and with the provisions for future uncertainty. Such decisions involve huge investments, and once the decisions have been executed, recourse options are very costly. Healthcare facility location and allocation decisions are of great importance due to their impact on accessibility to healthcare as well as direct and social cost of peoples well-being in a region. Healthcare facility location decisions that are optimal for current demand may become sub-optimal as demand distribution changes due to population growth and rapid urbanization. Therefore, future demand realizations should be incorporated in the decision making process to ensure long term optimality. The current study presents three mathematical models following grid-based location problem approach and take into account current and future demands in the decision making process. The decisions from the models are optimal long term healthcare facility location and patient allocation decisions for the current time and for a future time point. The first model provides the optimal locations for multiple types of facilities to be built at present and at the future time point and the corresponding allocations of patients to the nearest facilities. In the second model, instead of restricting patient allocation to the nearest facility, a relaxed allocation policy is considered where patients can go to facilities within allowable travel distance. The third model follows more relaxed allocation policy by allowing allocation of patients from one location to multiple facilities. Integer allocation variables are introduced and binary variables are discarded. Finally, the models are implemented with a standard modeling language AMPL and numerical instances were solved with CPLEX solver. Results show that all the models are capable of solving small to medium size problems. In terms of solution quality and computational time, the third model was found to be more suitable than the other two. The long term decision making approach presented in this study can be of great value for government and other organizations in making optimal decisions regarding healthcare or other service facilities.
    Keywords: Healthcare facility location; Grid-based location problem; Long term location decision; Integer programming.

  • Improving recommendation quality by identifying more similar neighbours in a collaborative filtering mechanism   Order a copy of this article
    by Rahul Kumar, Pradip Bala, Shubhadeep Mukherjee 
    Abstract: Recommender systems (RS) act as an information filtering technology to ease the decision-making process of online consumers. Of all the known recommendation techniques, collaborative filtering (CF) remains the most popular. CF mechanism is based on the principle of word-of-mouth communication between like-minded users who share similar historical rating preferences for a common set of items. Traditionally, only those like-minded or similar users of the given user are selected as neighbours who have rated the item under consideration. Resultantly, the similarity strength of neighbours deteriorates as the most similar users may not have rated that item. This paper proposes a new approach for neighbourhood formation by selecting more similar neighbours who have not necessarily rated the item under consideration. Owing to data sparsity, most of the selected neighbours have missing ratings which are predicted using a unique algorithm adopting item based regression. The efficacy of the proposed approach remains superior over existing methods.
    Keywords: collaborative filtering; recommender systems; similarity coefficient; true neighbours; prediction algorithm.

  • Best A* Discovery For Multi Agents Planning   Order a copy of this article
    by Mohammed Chennoufi, Fatima Bendella, Maroua Bouzid 
    Abstract: This paper proposes a new approach for multi-agent planning and decision support. The conventional algorithms such as Dijkstra, A* cannot solve complex problems with spatio-temporal constraints. So we are interested in developing a new strategy for the best path based on BDI agents for an emergency evacuation problem of a population crowd, besides the study of the macroscopic behavior emerging from simple interactions between agents by decreasing the evacuation time which is a challenge and a very complex task. Multi-agent systems are well suited to modeling such systems. The idea is to make a two-dimensional modeling of the environment as a Quadtree graph and an hybrid architecture: A* search from the node, where the individual is located to direct it to the best exit node while adding physiological factors to this search, a robust method for collision avoidance and decision support to help the agent will replace the initial destination with anew one. Our model is implemented and tested with java and Netlogo 5.2.1 platform.
    Keywords: Complex System; A*; Multi-agent systems; Crowd; Path; Decision Support; Planning; Evacuation; Simulation; Emergence.

  • Evaluation of Ethanol Multimodal Transport Logistics: A Case in Brazil   Order a copy of this article
    by Henrique Correa, Peter Wanke, Andre Martins 
    Abstract: This paper evaluates a large-scale ethanol multi-modal logistics system in Brazil. This system mainly involves ethanol logistics activities using pipelines and waterways to supply the Brazilian internal and export markets. A transshipment model is used for the treatment of logistic flows. A linear programming model was developed to determine the transshipment and replenishment flows from more than 400 ethanol plants to more than 70 terminals and distribution centers using various modes of transportation. Optimal results occur when pipeline and waterway systems reach full capacity by taking volume away from road transportation on long distances, suggesting that the use of these options has the potential to make the ethanol logistics in Brazil more efficient and competitive in the future.
    Keywords: Ethanol; Transshipment; Pipeline; Waterways; Linear Programming.

  • A reverse logistics model for decaying items with variable production and remanufacturing incorporating learning effects   Order a copy of this article
    by Swati Sharma, S.R. Singh, Mohit Kumar 
    Abstract: In order to meet environmental concerns/regulations, suppliers often endeavor to recover the residual value of their used products through remanufacturing. In this research article, an integrated production and remanufacturing inventory model for a single supplier and a single buyer is presented. There is one production and one remanufacturing cycle for the supplier while multiple batches are considered for the buyer. Demand rate for the supplier and buyer is taken a linearly increasing function of time. It is presumed that production, remanufacturing and returned rates are demand dependent and items deteriorate while they are kept in storage. This model also incorporates the effect of learning in ordering cost, holding cost, deteriorating cost and purchasing cost for the buyer as these costs reduce cycle by cycle due to learning effect from the previous cycle. The numerical examples, sensitively analysis and graphical illustrations are given to illustrate the model.
    Keywords: reverse logistics; inventory model; deterioration; variable production and remanufacturing; learning effects.

  • Heuristics for disassembly lot sizing problem with lost sales   Order a copy of this article
    by Mustapha HROUGA 
    Abstract: Disassembly is a major activity performed in treatment and recovery facilities and is the most important precedence of product and recovery part. It is defined as a systematic method of separating a product into its constituent parts and subassemblies. As economic activities and environmental pressures increase, the volume of product reverse flows are more and more important and costly. This paper focus on single-item disassembly lot sizing problem without and with lost sales, we propose an optimization approach to minimize the set-up costs and inventory costs in a first time and in second time we include lost sales costs. Compared to classical lot sizing problems with lost sales on a finite planning horizon, our problem has some specificities that require original optimization methods. To this end, we propose three most well-known heuristic approaches for the single-item disassembly lot sizing problem without and with lost sales: Silver Meal (SM), Part Period Balalncing (PPB) and Least Unit Cost (LUC). All three heuristics are myopic in the sense that they only consider the costs between two set-ups periods focus solely on the next demand and ignore costs associated with future demand and have outstanding results for classical lot sizing problem with returns which made then more easy to implement. The performance of the proposed solutions is compared with those obtained from a mathematical programming solver for small instances using different demands configurations (increasing, decreasing and variables) and planning horizon (10, 20 and 30 periods). Results show that the three heuristics used in the classical lot sizing problem can be also used to solve the disassembly lot sizing problem without and with lost sales, especially for small and medium instances. Results also show that: a) SM and PPB outperform LUC, b) increased variation in the demand quantity can lead to reduced cost, showing that certainty is more important than variation of the demands, and c) comparison between proposed heuristics and CPLEX, as an exact solution for small and medium size problems (since there is no effective dynamic programming method for the problem with lost sales), shows that we can trust the proposed heuristics as a solution methodology to solve disassembly lost sizing without and with lost sales for larger instances and more complex problems such as multi-level or capacitated disassembly lot sizing.
    Keywords: Disassembly planning; lot-sizing; reverse logistics; lost sales.

  • Application of a genetic algorithm for multi-item inventory lot-sizing with supplier selection under quantity discount and lead time   Order a copy of this article
    by Sunan Klinmalee, Chirawat Woarawichai, Thanakorn Naenna 
    Abstract: This study presents an application of genetic algorithm (GA) for solving the multi-item inventory lot-sizing problem with supplier selection under discounts and lead time constraints. A mixed-integer linear programming (MILP) model is developed for proposed problem. To solve the problem, a genetic algorithm (GA) with two additional operations is proposed for handling the effect of the problem size. An adaptor for adjusting a chromosome data before the evaluation process and a penalty step for deterring an infeasible solution are developed. Finally, numerical examples are generated to evaluate the performance of the proposed GA, and the comparison with MILP approach about the solution quality and time is presented.
    Keywords: genetic algorithm; inventory lot-sizing; supplier selection; lead time; quantity discount; mixed-integer programming.

  • Hybrid BBO PSO based Extreme Learning Machine Neural Network Model for Mitigation of harmonic distortions in Micro Grids   Order a copy of this article
    by Gunasekaran Subramanian, Maheswar Rajagopal 
    Abstract: Microgrid tends to be the cluster of some of the renewable energy sources like photovoltaic, wind, diesel engine, fuel cell and so on. The most important research area in the power distribution system side is the improvement in the quality of power delivered to the end users. This paper focuses on enhancing the power quality of the microgrid system at the distribution point. Here, in order to improve and deliver quality power, shunt active power filter is employed at the distribution side and the main aim of this paper is to design an appropriate controller that achieves a better compensation for the considered shunt active power filter. It is to be noted that the compensation methodology is dependent on the regulation process of the DC-link capacitor voltage. Traditionally, this regulation process is carried out employing a closed loop proportional-integral (PI) controller. In this paper, a hybrid Biogeography Based Optimization (BBO) Particle Swarm Optimization (PSO) based Extreme Learning Machine (ELM) neural network model is proposed to design the compensation for the shunt active power filter as well to mitigate the harmonics so that effective power gets delivered through the grid. The proposed Hybrid BBO-PSO based ELM as applied for the considered microgrid system is compared with the other methods available in the literature to prove its validity. Simulation results shows that the proposed hybrid controller achieves better solutions for compensating the shunt active power filter for harmonic mitigation in microgrids than the other methods.
    Keywords: Microgrid – Shunt active power filter – Power Quality – Harmonic Mitigation – Biogeography Based Optimization – Particle Swarm Optimization – Extreme Learning Machine Neural Networks.

  • Interference reduction using Particle Swarm Optimization in MIMO-WCDMA Multicellular Networks   Order a copy of this article
    by Mohan N. 
    Abstract: In this paper, Particle Swarm Optimization (PSO) algorithm based interference reduction is proposed in Multiple Input Multiple Output (MIMO) using wide-band code division multiple access (WCDMA). During transmission MIMO network may get interfered by some interference such as co channel interference and adjacent channel interference. To reduce these interferences many algorithms have been proposed in previous research. Further improve the performance of the MIMO-WCDMA network and reduce the bit error rate (BER) an optimized algorithm is PROPOSED. Simulation results of this paper show that bit error rate (BER) is reduced and also throughput of the network also improved.
    Keywords: Particle Swarm Optimization (PSO); Multiple Input Multiple Output (MIMO); WCDMA; BER.

  • Blocking Probability based Admission Control Technique for QoS Provisioning in WDM networks   Order a copy of this article
    by M.R. Senkumar, K. Chitra 
    Abstract: In this paper, we have proposed a blocking probability based admission control technique for QoS provisioning on in WDM networks, for this, we estimate the blocking probability for an arriving connection request. The probability that there is at least one free wavelength at the specified book-ahead time that remains idle for the whole connection duration. Next to this an admission control scheme used in each group for deterministic QoS provisioning. The admission control scheme has its root from network calculus which can derive deterministic bounds on throughput and delay rather than statistical averages. Along with the delay metric, the blocking probability is also considered as the main constraints for admission control. The scheme allocates the aggregate token bucket for each class of traffic based on its bandwidth share.
    Keywords: WDM networks; quality of service; QoS; blocking probability.
    DOI: 10.1504/IJOR.2020.10012547
  • A suggested method for solving capacitated location problems under fuzzy environment   Order a copy of this article
    by Maged Iskander 
    Abstract: In this paper, a new approach for solving fuzzy capacitated location problems is proposed. Both the capacity and the demand constraints are considered fuzzy while the objective function is not. The max-min approach is utilized within the proposed method. A membership function is defined for the non-fuzzy objective function to convert it to a fuzzy one. The α-cut is employed for the membership functions. The models which are in the form of mixed zero-one nonlinear programs are transformed to their equivalent linear ones. Four mixed zero-one linear programs are required to be sequentially solved. The solution of the fourth program represents the ultimate optimal solution of the problem. The suggested approach is illustrated by a numerical example.
    Keywords: fuzzy programming; fuzzy capacitated location problem; max-min approach; Chang’s linearization approach; mixed zero-one programs.

  • An Analysis of Korean Bank Performance Using Chance-Constrained Data Envelopment Analysis   Order a copy of this article
    by Yong Joo Lee, Seong-Jong Joo, TaeWon Hwang 
    Abstract: For measuring the performance of firms using data envelopment analysis (DEA), many studies assume that inputs and outputs are deterministic. For example, key indicators for financial institutes such as assets, deposits, number of employees, and profits vary over time. Nonetheless, researchers take snapshots of these numbers and analyze them for performance measurement and benchmarking. Similarly, it is not an exception for the studies with DEA for Korean financial institutes. We allow inputs and/or outputs to be stochastic and analyze the comparative performance of Korean banks. We found that large or top five banks were inconsistent sensitivity on the variability of inputs and/or outputs across models. The contributions of our study include demonstrating DEA analysis using stochastic inputs and outputs for the Korean banks and providing realistic insights to the managers of the banks.
    Keywords: Performance measurement; benchmarking; data envelopment analysis; stochastic variables; Korean banks; chance constrained DEA.

  • ABC Algorithm for Estimation of Dynamic Parameters in Radial Power System Transfer path   Order a copy of this article
    by Jeha J., S. Charles Raja 
    Abstract: In the paper, an efficient technique is utilized for improving the dynamic performance of interconnected power system. Here, the artificial bee colony algorithm (ABC) is used to predict the stability of the power system and is evaluated the aggregated machine reactance and inertias in the transfer path. The proposed method is used for estimating the dynamic parameters of the aggregated machines for each area utilizing the amplitudes of voltage oscillations measured at any three intermediate points on the transfer path. The two-machine reduced model is used to represent the inter area dynamics of a radial, two-area power system with intermediate dynamic voltage control. Two types of voltage control equipment are considered, namely, a static Var compensator (SVC), and a Thyristor Controlled Series Capacitor (TCSC). The proposed method focuses on transfer path which is utilized the TCSC for including the purpose of voltage support and reducing the disturbance in the system. Here, the proposed methods employ bus voltage phasor data at several buses including the voltage control bus, and the line currents on the power transfer path. Here, the three phase fault is applied in the power system. Based on the estimation, the dynamics of the power system is improved and the proposed strategy is utilized for improving the overall dynamic security. The proposed technique is implemented in MATLAB/Simulink working platform and the output performance is evaluated & compared with the existing methods such as without facts devices, SVC based controller and (Genetic Algorithm) GA based TCSC controller respectively.
    Keywords: Dynamic parameters; voltage; TCSC; SVC; reactance; inertia; ABC and GA.
    DOI: 10.1504/IJOR.2020.10011648
  • A continuous review policy based on the Stock Diffusion Theory: Analysis and insights via Monte-Carlo simulation   Order a copy of this article
    by Francesco Zammori 
    Abstract: The Stock Diffusion Theory (SDT) is an innovative model for inventory management, which can be effectively applied even in case of heteroscedastic demand, evolving both in mean and variance. To operate, the SDT requires, as input, the trend of the mean μ(t) and that of the variance σ^2 (t) of the demand. Yet, estimating these functions may be challenging and so our goal is to assess the applicability of the SDT at the operational level. To this aim, we used the SDT to formulate a continuous review policy, characterized by a dynamic reorder level and, next, we introduced two practical ways to estimate μ(t) and σ^2 (t). Lastly, numerical Monte-Carlo simulations were used to assess the performances of the model, with respect to standard continuous review policies taken as benchmark. Obtained outcomes confirm the superiority of the SDT and its applicability in most practical cases.
    Keywords: Continuous review policy; Inventory management; Monte-Carlo Simulation; Stock Diffusion Theory.

  • Adaptive Technique for Transient Stability Constraints Optimal Power Flow   Order a copy of this article
    by V. Manjula, A. Mahabub Basha 
    Abstract: This document explains about an adaptive method for optimal power flow (OPF) of the power system, which is depending on the transient constancy restraints. The adaptive method is the mixture of both Cuckoo Search (CS) algorithm and Artificial Neural Network (ANN). The innovative anticipated adaptive method is extremely flexible in nonlinear loads, suitable for user interface and logical reasoning, and allowing controlling formats. In the predefined generator, the CS algorithm optimizes the generator arrangements by the load demand. The foremost intention of the CS algorithm is to reduce the fuel cost and emission cost. The obtainable ANN method is mainly used to develop the levy flight searching activities of the CS algorithm. The levy flight parameters are generally used to meet of the requirements the ANN, which envisage the precise consequences at the testing time. The anticipated adaptive method is executed in the MATLAB/Simulink platform and the efficiency of the anticipated procedure is investigated by the comparison analysis.
    Keywords: Optimal power flow; CS algorithm; Artificial neural networks; Cost minimization; Power loss reduction; Synchronous generator.
    DOI: 10.1504/IJOR.2020.10013406
  • Prioritizing Critical Failure Factors for the Adoption of ERP System using TOPSIS Method   Order a copy of this article
    by Santosh Kumar Yadav, Dennis Joseph 
    Abstract: Enterprise resource planning (ERP) applications are complex and difficult to implement. Even after implementation many ERP projects are not used or adopted by employees. Organizations are struggling to convince and motivate employees to adapt smoothly to them. Several personal, managerial and organizational issues contribute to successful adoption. This research paper attempts to identify potential issues that lead to failures in the adoption of ERP systems in enterprises. Earlier studies have identified different contributing issues to the failure of ERP systems. A Questionnaire was developed around these significant influencing issues reported in literature and industry people mostly senior managers having good experience with ERP systems were asked to rate the importance of these factors. TOPSIS method was applied to rank the factors based on their importance in the failure of ERP systems. From the results, it is found that poor top management support and poor quality of testing were the two most important critical failure factors for ERP adoption. While implementing ERP systems, an organization has to give importance to these failure factors based on this rank to ensure ERP implementation success.
    Keywords: Enterprise systems; ERP; ERP failure factors; ERP adoption; TOPSIS.

  • Evaluation and designing reverse logistics for risk-neutral and risk-seeking decision makers   Order a copy of this article
    by Aida Nazari Gooran, Hamed Rafiei, Masoud Rabbani 
    Abstract: Designing appropriate supply chain would provide numerous valuable feedbacks for the whole chain, since using returned products instead of reproducing them, is a more appropriate response to the environmental concerns on the one hand which provides benefit and financial savings for the chains on the other hand. Therefore, this paper presents a three-objective function mathematical model to maximize financial savings and quantities of returned products to the chain and minimize total costs in terms of uncertainty and risk that derives from reverse logistics nature. Finally, the developed model was solved by Monte Carlo simulation and genetic algorithm along with proper risk measures for risk-neutral and risk-seeking decision makers. The results indicated financial savings are one of the best objective functions in order to show superiority of reverse logistics network. As another result, it was pointed out that profitability of the chain increases because of delivering return products before their scrap-life.
    Keywords: Reverse logistics; Uncertainty; Risk; Risk measures; Genetic algorithms; Monte Carlo simulation.

  • Economic ordering policy for deteriorating items with inflation induced time dependent demand under infinite time horizon   Order a copy of this article
    Abstract: This article deals with an Economic Order Quantity (EOQ) model for deteriorating items in which the demand is considered to be inflation induced time dependent under infinite planning horizon. Here, we have considered two different models, that is, shortages are not permitted in model-I and shortages are permitted with partial backlogging in model-II. The salvage value associated with the deteriorated units is also considered. The objective of this work is to minimize the total inventory cost and to find the optimal length of replenishment and the optimal order quantity. Numerical examples given illustrate the solution procedure. Comparative study between the two developed models is carried out. The insights obtained from managerial point of view are discussed in detail with the aid of sensitivity analysis with respect to major parameters of the inventory system.
    Keywords: Inventory;Deterioration;Inflation;Salvage value;Shortage;.

  • Fuzzy Logic Based Multi Level Shunt Active Power Filter for Harmonic Reduction   Order a copy of this article
    by Elango Sundaram, Subramanian R, Manikandan V, Ramakrishnan K 
    Abstract: - In this paper, using a three level diode clamped multilevel inverter and DC capacitor, a shunt active power filter (SAPF) is implemented to mitigate the supply current harmonics and compensate reactive power drawn from nonlinear load. The advantage of using three level inverter paves way to reduced harmonic distortion and switching losses. Fuzzy logic control and unit sine vector control are proposed in this paper for generating reference current for the SAPF. The advantage of fuzzy control is that it is based on a linguistic description and does not require a mathematical model of the system. The implementation of Fuzzy Logic Control (FLC) algorithm is executed using MATLAB fuzzy logic tool box. The proposed pulse width modulation (PWM) method produces the switching signals to the inverter from the sampled reference phase voltage magnitudes as in the case of conventional space vector PWM (SVPWM). The simulation results illustrate that the proposed three level SAPF with low harmonic content in supply current and in phase with the line voltage. The simulation results are validated with prototype model for demonstrating the effectiveness of the system.
    Keywords: Fuzzy logic; active filters; total harmonic distortion; pulse width modulation; reactive power.

  • Constrained Project Scheduling Problem: A Survey of Recent Investigations   Order a copy of this article
    by Mohamed Abdelbaset, Asmaa Atef, Abdelnasser Hussien 
    Abstract: Scheduling and managing projects are very important topics in project management science. Constrained resources project scheduling problem CRPSP is a problem of the purpose of allocating the available resources to specific tasks or activities for achieving specific objectives or purposes such as minimizing the makespan or time of the projects, minimizing the execution cost of the project, or any other specific objective or more than one objective at the same time (multi-objectives resource constrained project scheduling problems). Optimizing constrained resources project scheduling CRPSP is considered as a problem structure of deterministic nature. This structure case is an extension to the critical path method and with the resource usability constraints. Seeking for constrained resource scheduling procedures and scenarios is a very good researched domain considering that finding feasible scheduling plan or procedure under uncertainty conditions has been considered as a hot area for the recent research years and are of harm needs for the researchers' interest. This paper introduces a survey for procedure scenarios, techniques, and models that are considered the main context history of CRPSP and Multi-Mode Constrained Resource project scheduling problems MMCRPSP and classified based on research work principles itself. It aims to exhibits, highlights, and update the recent CRPSP surveys. The current state of art for recent researches is evaluated and the potential research directions and orientations are pointed. Also a new framework is proposed for the researchers of interest for this domain of research.
    Keywords: Constrained Resources Project Scheduling Problem - Multi-Mode Constrained Resource Projects – Exact methods – Heuristic methods – Meta-heuristic methods.

  • High-level Stochastic Project Cost and Duration Planning Methodology Integrating Earned Duration, Schedule and Value, Criticality, Cruciality and Downside Risk Metrics   Order a copy of this article
    by David A. Wood 
    Abstract: A high-level methodology is described to integrate deterministic and stochastic calculations of project networks with parallel pathways of work items. It provides the systematic integration of earned value, earned schedule and earned duration metrics and derivative to-completion forecasts of project cost and duration with stochastically-derived quantitative measures of criticality, cruciality, uncertainty and downside risk measures at project, work item and budget levels. A project network consisting of up to about fifty high-level project work items (rather than hundreds of activities) is evaluated applying critical path analysis using a matrix template that derives the fraction of the project completed at regular intervals (e.g. 2% to 5%) along a baseline planned project schedule the work-progress-breakdown diagram. This matrix is evaluated for each deterministic and stochastic case providing the key information to derive a spectrum earned value metrics, and to quantify uncertainty, down-side risk and criticality at the work-item, pathway and project levels.
    Keywords: project cost duration simulation; stochastic earned value duration metrics; probabilistic project network critical path; duration performance index DPI; project versus work-item criticality cruciality; quantified project risk uncertainty; project work-progress-breakdown diagrams.

  • Sustainable Partner Selection: An Integrated AHP-TOPSIS Approach   Order a copy of this article
    by Ramanjan Bhattacharya, Rakesh Raut, Bhaskar. Gardas, Sachin Kamble 
    Abstract: The selection of an efficient partner for any organization improves its overall performance. In the present research for the selection of an efficient, sustainable partner forty-nine selection criteria were identified through the exhaustive literature review, and by applying the Delphi technique, the evaluation criteria was reduced to sixteen. Later, analytic hierarchy process (AHP) was employed for calculating the relative weights of the shortlisting criteria. Then, the technique for order preference by similarity to ideal solution (TOPSIS) methodology was used for ranking the partners. The findings of the AHP approach revealed that cost (includes environmental cost)/price (C8), environmental competencies (concern for environment) (C15), and human resource management and human rights issues (C9) are the top three significant selection criteria and the results of TOPSIS highlighted that partner B is the best partner amongst the three identified partners. The developed model is intended to guide the decision and policy makers in the identification of the significance or importance of selection criteria, and for formulating the strategies or policies for the selection of efficient partners.
    Keywords: partner selection; multi-criteria decision making (MCDM); AHP; TOPSIS; textile industry.

  • Managing unreliability in automotive supply networks an extension of the joint economic lot size model   Order a copy of this article
    by Tim Gruchmann, Marcus Brandenburg 
    Abstract: Within assembly network supply chains, supply disruptions can occur on every supplier-buyer link. Managing this network unreliability can help to reduce schedule instability and increases the overall efficiency of the supply chain accordingly. In this line, a stylised assembly network supply chain model is proposed with two suppliers and a single buyer using the joint economic lot sizing approach. This supply network can be disrupted by a shortage occurring at one of the two suppliers due to random machine breakdowns, which consequently creates dependent requirements variations affecting both the buyer and the entire network. First, the basic joint economic lot sizing model is extended by the said schedule instability. Second, a solution approach is presented concerning the determination of optimal lot sizes, the investment into the reliability of the supply network as well as the determination of safety stocks. Furthermore, the sensitivity of relevant model parameters is investigated by means of a numerical example. Managerial implications are accordingly derived focusing on the reliability of the supply network members and internal incentive structures.
    Keywords: schedule instability; automotive supply networks; joint economic lot sizing; supply unreliability; safety stocks.

  • A deterministic production inventory model with defective items, imperfect rework process and shortages backordered   Order a copy of this article
    by Harun Öztürk 
    Abstract: The basic assumption of the conventional inventory models is that all items produced are of perfect quality. In practice, some defective items are produced due to process deterioration or other factors. This paper develops a mathematical model for an imperfect production inventory system. It is assumed that the defective items produced in the regular production process consist of scrap, imperfect quality and reworkable items. The rework process is accomplished immediately when the regular production process ends, and the rework process produces scrap, imperfect quality and as-good-as perfect items. A numerical example is provided to illustrate the developed model, and a sensitivity analysis is carried out. It was found that producing scrap and imperfect quality items through the reworking is crucial, since this assumption effects optimal policy. Managerial insights are also presented based on the numerical examples.
    Keywords: inventory management; production planning; screening; defective items; imperfect rework process; shortages.

  • A push strategy optimization model for a marine shrimp farming supply chain network   Order a copy of this article
    by Chaimongkol Limpianchob, Masahiro Sasabe, Shoji Kasahara 
    Abstract: Marine shrimp farming operations in Southeast Asia are still traditional and need to be improved in efficiency. In this paper, we first model a marine shrimp supply chain network, which consists of suppliers, farms, distribution centres, traders, and consumers. We also develop a mixed-integer linear programming under the push strategy framework in order to maximize the farmers profit. Through a sensitivity analysis, we examine how the increase in costs affects the profits. The computational results are presented to demonstrate the feasibility of a real case of smart marine shrimp farming.
    Keywords: push strategy; supply chain network; mixed-integer linear programming; marine shrimp farming; giant freshwater prawns.

  • Cost optimization and maximum entropy analysis of a bulk queueing system with breakdown, controlled arrival and multiple vacations   Order a copy of this article
    by Nithya R P, Haridass M 
    Abstract: This article analyses a single server batch arrival general bulk service queueing system with multiple vacations, controlled arrival of batches and breakdown. The service is done in bulk with a minimum of a customers and a maximum of b customers. The server is assigned for secondary jobs (vacations) repeatedly when the number of customers is inadequate to process. However, all arrivals are not considered for service at all times. During the service period, the arrivals are accepted with a probability α, whereas, during the vacation period, the arrivals are accepted with a probability β. During a batch service, if the server breaks down with probability π, the service for the particular batch is processed without interruption. Upon completion of batch service, the renovation of service station will be considered and during renovation, the arrivals are accepted with probability γ. The probability generating function for the queue size at an arbitrary time epoch, for the proposed queueing model is derived. Various performance measures like expected queue length, expected waiting time, probability that the server is on vacation, probability that the server is busy, expected length of busy and idle period are obtained. A few particular cases are discussed to justify the result obtained. Maximum entropy principle is used to determine the solution for steady state probability distribution of queue size and expected waiting time in the queue. A comparative analysis of the results obtained and the analytical results of the proposed model is carried out. The final analysis is validated through numerical illustration. The cost model is also developed to optimize the cost and analyze the utilization of idle period. The findings of this research demonstrate that, for stochastic modelling of complex queueing systems, maximum entropy principle provides an easy approach to determine the unknown probability distributions subject to the mean value of constraints. Moreover, it is a feasible method which can be readily used in practice for approximating the analytical solution.
    Keywords: Bulk arrival; batch service; multiple vacations; breakdown; controlled arrival; maximum entropy principle.

  • Pricing and cooperative advertising decisions in a two-echelon dual-channel supply chain   Order a copy of this article
    by Arash Apornak, ABBAS Keramati 
    Abstract: Developments of e-commerce lead manufacturers and retailers to open direct online channel versus traditional channel in the market. In this paper we consider a supply chain consisting of a manufacturer and a retailer evaluate the impact of price schemes and cooperative advertising mechanisms on dual-channel supply chain competition in traditional and direct online channels as its setting by using Nash equilibrium and cooperative game then find the optima value of each decision variable of the study under preferred scenarios, According to the results the value of decision variables in traditional channel is more than direct online channel in both scenario and also in profit improvement part the analyses shows both channel is sensitive to demand, The results of this study can help managers to consider the interplay between the upstream and downstream entities of a dual channel.
    Keywords: Pricing; Cooperative advertising; Nash Equilibrium; Cooperative game; two echelon supply chain.

  • Optimization of multi-plant capacitated lot-sizing problems in an integrated supply chain network using calibrated metaheuristic algorithms   Order a copy of this article
    by Maryam Mohammadi, Siti Nurmaya Musa, Mohd Bin Omar 
    Abstract: In this paper, a mathematical model for a multi-item multi-period capacitated lot-sizing problem in an integrated supply chain network composed of multiple suppliers, plants and distribution centers is developed. The combinations of several functions such as purchasing, production, storage, backordering and transportation are considered. The objective is to simultaneously determine the optimal raw material order quantity, production and inventory levels, and the transportation amount, so that the demand can be satisfied with the lowest possible cost. Transfer decisions between plants are made when demand at a plant can be fulfilled by other production sites to cope with the under-capacity and stock-out problems of that plant. Since the proposed model is NP-hard, a genetic algorithm is used to solve the model. To validate the results, particle swarm optimization and imperialist competitive algorithm are applied to solve the model as well. The results show that genetic algorithm offers better solution compared to other algorithms.
    Keywords: capacitated lot-sizing; multi-plant; production and distribution planning; integrated supply chain; optimization; metaheuristic algorithms; genetic algorithm; particle swarm optimization; imperialist competitive algorithm.

  • Location of Depots and Allocation of Buses to Depots in Urban Road Transport Organizations: A Mathematical Model and Greedy Heuristic Algorithm   Order a copy of this article
    by M. Mathirajan Mathi, P. Suba, Ramakrishnan Ramanathan 
    Abstract: Optimizing the cost of operations is one of the major issues in any Urban Road Transport Organizations (URTOs). In this study a decision problem on location of depots (adding new locations and removing existing ones) and allocation of buses to depots is considered. The problem is solved for the case of Bangalore Metropolitan Transport Corporation (BMTC), a major URTO in Karnataka, India. The main focus of this research is to provide analytic methods to minimize the cost of operations comprising (a) dead-kilometre cost, (b) fixed cost associated with introducing new depots, and (c) salvage value due to closing the depots. To do so, a (0-1) mixed Integer Liner Programming (MILP) model is proposed and its workability is demonstrated. In addition to the proposed (0-1) MILP model, a simple greedy heuristic algorithm is also proposed. A computational experiment is developed to understand the performance efficiency of the proposed greedy heuristic algorithm in comparison with the optimal solution. From the average and worst case analyses of the performance evaluation, it is observed that the proposed greedy heuristic algorithm provides near-optimal solution (that is on an average the loss of optimality is less than 0.2 percent). The (0-1) MILP model or the efficient greedy heuristic algorithm proposed in this study can be used to help make better decisions on location of depots and allocation of buses to depots of URTOs in general.
    Keywords: Location of Depots; Allocation of Buses to Depots; Dead-Kilometre Costs; Salvage Value; MILP model; Greedy Heuristic Algorithm.

  • Multi-objective simulation optimisation on discrete sets: a literature review   Order a copy of this article
    by Moonyoung Yoon, James Bekker 
    Abstract: Simulation optimisation is an interesting and fast-growing research field fostered by advances in computer technology and increased computing power. These advances have made it possible to solve complex stochastic optimisation problems using simulation. Most simulation optimisation studies focus on single-objective simulation optimisation (SOSO), and multi-objective simulation optimisation (MOSO) has only recently drawn attention. This paper provides an overview of recent studies on discrete MOSO problems. We surveyed various MOSO algorithms and classified them, based on 1) the size of the feasible solution space, and 2) the method of dealing with the multiple objectives. For the latter, we identified three categories, namely scalarisation methods, the constraint approach, and the Pareto approach. MOSO algorithms in each category are discussed in some detail.rnWe conclude the paper by discussing some related issues in MOSO, which include noise handling techniques and the issue of exploration versus exploitation.rn
    Keywords: simulation; optimisation; multi-objective; ranking; selection.

  • Rotary Heuristic for Uncapacitated Continuous Location-Allocation Problems   Order a copy of this article
    by M.D.H. Gamal 
    Abstract: This paper proposes a constructive heuristic method to solve location-allocation problems. Specifically, we consider the problem of locating m new facilities in a continuous region such that the sum of the weighted distances from the new facilities to n existing facilities is minimized. The distance is measured using the Euclidean-distance metric. This simple technique shows that the solution found is encouraging for the case where the number of users is much larger than the number of facilities to be located.
    Keywords: facility location; heuristic; location-allocation.

  • A modified column generation algorithm for scheduling problem of reentrant hybrid flow shops with queue constraints   Order a copy of this article
    by Bing-Hai Zhou, Ke Wang 
    Abstract: To effectively enhance the production efficiency of multi-reentrant workshop, the queue constraint is taken into account where products are processed layer by layer, and then a scheduling method of reentrant hybrid flow shops based on column generation algorithm is proposed. Firstly, a two-stage scheduling model of reentrant hybrid flow shops is described with parallel machine of single item processing at the first stage and batch processing machine at the second stage and then a mathematical programming model is built with an objective of minimizing the total completion time. A column generation algorithm is developed by decomposing the scheduling problem into main problem and job-level sub-problem. Dynamic programming with multiple decision-making is designed to solve each sub-problem and the newly added column is combined to main problem. Further, the adaptive accelerating strategy is applied to effectively improve the algorithm convergence. In the process of generating integral solutions by using branch-and-bound method, the column pool is built and the neighborhood mutation method is employed. Finally, numerical experiments in different problem scales are carried out to analyze the proposed algorithm. Results verify the validness and feasibility of the proposed algorithm.
    Keywords: queue; reentrant; column generation; batch processing; dynamic programming.

  • Economic Allocation of Farm Land for Commercial Crops-A Case Study in Kasargod Region of India   Order a copy of this article
    by Sunith Hebbar, Raveena Suvarna 
    Abstract: Economic allocation of land, is an important activity in agricultural planning. Due to the changing prices of crops in market, its vital for a farmer to appropriately allocate the land for the various crops to maximize the income. Therefore, this study focus on allocation of land for commercial crops, namely arecanut, pepper, coconut and rubber. Initially, Linear Programming technique was applied to determine the optimum crop mix. The results of which is then compared with the traditional method adopted by the farmer. A sensitivity analysis was then performed to determine the optimal capital requirement. Later on to predict the behaviour of the income on a long run a SD model was developed. The factors like market price, cost of crops and weather conditions on yield were considered. The simulation results predicted that by 2030, the income will rise by 59% than the current condition if the suggested crop-mix is adopted.
    Keywords: Commercial crops; Linear Programming Model; Optimization of Crops; System Dynamics.

  • Multi-Objective Production Planning Problem: A Case Study for Optimal Production   Order a copy of this article
    by Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali 
    Abstract: In this paper, we have formulated a multi-objective production planning model for a hardware firm. This firm produces different types of hardware locks and other items in their production run. The objectives of the firm are to minimize the production cost, minimize the inventory holding cost and maximize the net profit subject to the set of realistic constraints. The production planning problem of a similar type in the past formulated under the certain environment where the input information precisely known to the decision maker (DM). However, in most of the situations, the input information is not precisely known. In such situations, fuzzy set theory plays a vital role in modelling of the problem where the input data has some vagueness.The proposed model of production planning also been formulated under fuzzy environment. Both triangular and trapezoidal fuzzy numbers used to present the vagueness in the input information. The equivalent crisp form of the fuzzy model obtained by two different defuzzification approaches namely ranking function and αcut approach. Henceforth, the formulated models under the certain and fuzzy environment have been solved by the fuzzy goal programming approach.
    Keywords: Production Planning Problem; Multi-objective Optimization; Fuzzy Goal Programming; Fuzzy Set Theory.

  • A hybrid GRASP for solving the bi-objective orienteering problem   Order a copy of this article
    by Hasnaa Rezki, Brahim Aghezzaf 
    Abstract: This paper focuses on the bi-objective orienteering problem (BOOP) that arises in the tourist routes design problem in cities. In this multi-objective extension of the well-known orienteering problem (OP), each point of interest has different profits, which could reflect the multiple preferences of tourists. The aim is to find routes, limited in travel time, that visit some points of interest and provide the maximum of the different total collected profits. In order to determine an effective approximation of the Pareto optimal solutions, we propose a hybrid Greedy Randomized Adaptive Search Procedure (GRASP) in which a General Variable Neighborhood Search (GVNS) is used as an improvement phase. To evaluate the performance of the proposed approach compared to the Pareto Variable Neighborhood Search (P-VNS) technique, we have used the test instances and the results provided by the P-VNS taken from the literature. Computational results reveal that the hybrid GRASP algorithm generates better approximations of Pareto-optimal solutions compared to the P-VNS method.
    Keywords: Bi-objective orienteering problem; GRASP; GVNS; Hybrid; Pareto-optimal solutions.

  • Inventory management policy for perishable products with Weibull deterioration and constrained recovery assumption based on the residual life   Order a copy of this article
    by Cinzia Muriana 
    Abstract: Economic Order Quantity models for perishable products generally disregard the relationship between the deterioration rate and the Characteristic Life (CL). They assume that the cycle time is lower than the CL, and the products that are in stock at the end of the cycle time are considered as outdated. This involves that still fresh products are salvaged at discounted price or disposed of. The paper presents an inventory model for perishable products, namely open dating and fruit and vegetables, in the presence of time-varying CL, Weibull deterioration model, and uncertain demand. The relationship between the Weibull deterioration model and the CL is enforced, determining whether to dispose of the products or salvage them at alternative markets. Results show that the model can be solved and the operating variables optimized.
    Keywords: EOQ model; Characteristic Life; Weibull deterioration; open dating foods; fruit and vegetables; Mean Residual Life.
    DOI: 10.1504/IJOR.2020.10012757
  • The General Pickup and Delivery Problem with Backtracking Restrictions   Order a copy of this article
    by Zachary Bowden, Cliff Ragsdale 
    Abstract: This paper introduces a model for the General Pickup and Delivery Problem (GPDP) that provides a novel approach to limit the amount of backtracking allowed in the solution. This problem is motivated by the increase in peer-to-peer vehicle transactions via online marketplaces such as eBay and an associated increase in the direct consumer procurement of shipping services for transporting recently purchased vehicles. We approach this problem in the context of a profit seeking objective while considering the cognitive processes and behavioral preferences of the driver as important to the ultimate solution of the routing problem. We offer a method for producing a set of good solutions that are differentiated based on backtracking characteristics of the directional flow of the route.
    Keywords: Vehicle routing; backtracking; PDP; profit maximization; behavioral logistics.

  • Stationary distribution of an infinite-buffer batch-arrival and batch-service queue with random serving capacity and batch-size-dependent service   Order a copy of this article
    by Sourav Pradhan, U.C. Gupta 
    Abstract: In traditional batch-service queueing systems, the mean service time of batches are generally assumed to be constant. However, in numerous applications this assumption may not be appropriate. In telecommunication networks, the transmission rates depend on the number of packets in the batch which can be framed as batch-size-dependent service queue. The objective of this paper is to focus on both queue and server content distribution in an infinite-buffer batch-arrival and batch-service queue with random serving capacity rule and batch-size-dependent service. After deriving a bivariate probability generating function of queue length and server content distribution at departure epoch of a batch, we extract the complete joint distribution in terms of roots of the characteristic equation. We also obtain the system as well as queue length distribution at arbitrary epoch. Finally, a significant number of numerical examples are appended to show the feasibility of the analytic procedure and results where the occurrence of multiple roots have been dealt without facing any difficulty. At the end, a graphical representation of cost of the system shows that batch-size-dependent service is more significant as compared to batch-size-independent service.
    Keywords: Batch-arrival; Batch-size-dependent; Random serving capacity; Supplementary variable; Queueing; Joint distribution.

  • Permutation Flow Shop Scheduling: Variability of Completion Time Differences - NP-Completeness   Order a copy of this article
    by Barbara König, Rainer Leisten, Jan Stückrath 
    Abstract: We consider the permutation flow shop scheduling problem and aim to obtain smoothness of jobs' completion times, by minimizing the variance or the variability of inter-completion times. This problem, including an efficient heuristics, was introduced in (Leisten & Rajendran 2015). Here we solve an open problem from that paper and show that the problem for more than two machines is NP-complete.
    Keywords: flow shop scheduling; variability of completion time differences; NP-completeness.

  • A model for optimal allocation of human resources based on the operational performance of organizational units by multi-agent systems   Order a copy of this article
    by Rahim Khanizad, Gholamali Montazer 
    Abstract: Optimal allocation of human resources is studied in this research. To solve the problem, a model of negotiation between intelligent agents is used in this study. Organizational units are considered as agents that seek for their benefits and use negotiation for human resources and job distribution. We firstly introduce operational performance level to find out how units can guarantee their performance. As a result, in this research, organizational decision making is managed in two levels by agents. In medium level, agents negotiate each other using optimal function to divide human resources optimally. Therefore, the final agreement will be distributed among the organization using the special function developed for this reason. Results have shown that organizational units operational performance is a good criterion for human resources distribution in organization.
    Keywords: human resources optimal allocation; intelligent agents; negotiation; optimality; operational performance.

  • A methodology to surface aspects of organizational culture to facilitate Lean Implementation within SMEs   Order a copy of this article
    by ABDULLAH ALKHORAIF, Patrick McLaughlin 
    Abstract: The purpose of this paper is to provide an instructional guidance on how to surface aspects of Organizational Culture that effect Lean Implementation within small and medium sized manufacturing organization. This paper describe how Grounded theory and Action research can be used inside each other. The paper suggests to not only use a translation method to validate the result but to use also Inter-rate reliability to increase the validity and reduce the subjectivity. The paper also demonstrates how different technique can help management research by including in a time effective way.
    Keywords: Lean Implementation (LI)rn Organizational Culture (OC)rn Grounded theoryrnAction researchrn Small and Medium-sized Enterprises (SMEs).

    by Luis-Angel Cantillo, Victor Cantillo, Pablo A. Miranda 
    Abstract: This paper proposes a sequential optimization approach for addressing a complex real world problem of dispatch planning and freight loading for a set of highly irregular products with a heterogeneous fleet of trucks. The approach focuses on the case of goods with low-density values, highly varied with large travel distances. The propossed approach is based on a two-phase strategy: The first optimizes the space assignment process inside trucks to each type of product. It is achieved by minimizing long-haul transportation costs as a function of the fleet size and capacity, considering a set of predefined feasible and efficient loading solutions or patterns. The second phase minimizes the number of visits per truck, assuming a fleet with fixed size and capacities for each type of product, which is determined in the first stage. The approach was successfully applied to a rolled steel company in Colombia, whose results show that the proposed model efficiently addresses the analyzed problem, which is reflected in reasonable solution times and costs from a practical implementation perspective
    Keywords: Truck loading ; Long-haul dispatching ; Heterogeneous fleet ; Irregular shape products ; Multi-commodity ; Big data.

  • The EOQ Model with Items of Imperfect Quality and Replenishment from Different Suppliers   Order a copy of this article
    by Noura Yassine 
    Abstract: The classical economic order quantity model is extended to the case where the items may be acquired from various suppliers. It is assumed that any lot size received from a supplier contains perfect and imperfect quality items. The percentage of perfect quality items in a lot size is a random variable having a known probability distribution. The imperfect quality items are detected through a 100% screening process conducted at the start of the inventory cycle. When the screening process is concluded, the imperfect quality items are sold in one batch at a discounted price. A mathematical model is developed to determine the total profit function. The optimal order quantity and the proportions of the order acquired from the suppliers are obtained by maximizing the total profit function. An iterative numerical algorithm that determines the optimal solution is proposed. Numerical examples are presented to illustrate the calculations in the case when the percentages of imperfect quality items follow the uniform distribution.
    Keywords: Constraint optimization; optimal lot size; probability distribution; imperfect quality items.

  • Analysis of infinite buffer general bulk service queue with state dependent balking   Order a copy of this article
    by Gopal Kumar Gupta, Anuradha Banerjee 
    Abstract: This paper investigates the effect of impatient phenomena of the arriving customers in a bulk service queue, where inputs are flowing into the system according to the Poisson process and are served in groups according to the `general bulk service' (GBS) rule. On arrival, a customer decides whether to join or balk the system, based on the observation of the system size and status of the server, i.e., whether server is busy or idle. The steady state joint probability distributions of the number of customers in the queue as well as with the server is obtained by using the probability generating function method, which is based on the roots of the characteristic equations formed using probability generating function for steady state joint probabilities. Finally, various performance measures, such as, average queue length, average waiting time, probability that the server is busy, average queue length when server is busy, etc., have been obtained. The paper ends with several numerical discussions to demonstrate the effect of certain model parameters on the key performance measures.
    Keywords: Balking; General bulk service rule; Joint probability distribution; Probability generating function; Poisson Queue.

  • Short-term operating room scheduling: a parallel machine under resource constraints problem   Order a copy of this article
    by Mohamed Amine ABDELJAOUED, Zied BAHROUN, Nour El Houda SAADANI 
    Abstract: The paper tackles the daily scheduling of surgical operations in an operating theatre. The considered operating rooms are identical and the set of operations is subdivided into groups, each of them performed by a single surgeon. The objective is to minimize the ending time of the last completed operation (makespan). We assume that the planning phase, which consists of determining the operations to be scheduled each day and assigning them to surgeons that are available on that day, is already fixed, and we only focus on solving the daily scheduling phase. To the best of our knowledge, few studies specifically focus on very short-term decisions (one-day horizon) in operating room management. The problem is NP-hard and is part of the parallel machine scheduling under resource constraints. We provide two mathematical models and compare their performance. The first is based on parallel machines scheduling, while the second highlights the similarities with the strip packing problem. Two heuristics based on a dichotomic approach are then introduced. An experimental study comparing their results to optimal solutions, lower bounds and an existing heuristic from the literature shows that the second proposed method performs the best and provides near-optimal or good results for realistic-size instances in reasonable computational times.
    Keywords: scheduling; operating room; parallel machines; resource; strip-packing.

  • Analysis of Time-Series Demand Forecasting Intervals for Exponential Smoothing Model   Order a copy of this article
    by Harpreet Singh 
    Abstract: The demand forecasting is used when there is a need to predict a numerical parameter for which past results are good indicators of future behavior. The scope of the article is to determine the time-series analysis using exponential smoothing method and its comparative analysis for formation of development of dynamic model as graphical user interface. The past data is based on different eighteen rubber molded products from two manufacturing units. The application of proposed work will be deciding the selection criteria of smoothing constant a for exponential smoothing and measures of forecast accuracy. The parameters are damping factor, MS database, mean absolute deviation, absolute percent error, project and implementation of dynamic model. The optimization study is conducted for smoothing parameters and forecast errors. The validation of model is also conducted for exponential model for the different eighteen products without linear trend and its comparative analysis with linear trend is also depicted and validated in proposed study. The Visual Basic for Applications (VBA) 6.0 version language was used to implement the functionality of these three above mentioned models for the creation of GUI and into Microsoft Excel for this study. Additionally, VBA was used to compute the Mean Absolute Error, which was used to compare each of the models. In this regard, for the comparison and validation purpose, the measured forecast error (s) for exponential- smoothing model is 4.57. The present system has the following advantages over the previous systems on forecasting analysis and the conclusions drawn from the results are mentioned as the present system is able to quantify sustainability of forecasting in terms of forecasting indices.
    Keywords: Demand forecasting; Time-series analysis; Exponential smoothing; forecast intervals.

  • Spiral With Line Segment Directory for a Helix Search Path to Find a Randomly Located Target in the Space   Order a copy of this article
    by Mohamed El-hadidy 
    Abstract: In this paper we present more interesting search plan in the space to find a lost hanging black box in the water from a view point of computational stochastic geometry. The space is divided into cubic cells with knowing side length. There exist one searcher moves on Helix path along spiral with line segment directory. Depending on the target has known trivariate known distribution, we focus on the optimal geometry features such as curvature and torsion of the Helix search path which minimize the expected value of detecting the target. Assuming trivariate standard Normal distribution we present numerical example to show the applicability of this model.
    Keywords: Computational Stochastic geometry; Search theory; Trivariate standard Normal distribution.

  • A Comprehensive Review of approaches used for solving Tele-center location allocation problem in geographical plane   Order a copy of this article
    by Rajan Gupta, Sunil K. Muttoo, Saibal K. Pal 
    Abstract: Setup of Tele-center is the world-wide approach for the establishment of Information and communication Technology Infrastructure in rural areas for the overall development of a country. It is a key resource under E-Governance plan in any country, but a major problem with their location allocation is the sustainability. Tele-center establishment require a suitable location to increase the beneficial effect to service seekers. In this research, multi-faceted problems faced by Tele-centers are highlighted. This paper presents a comprehensive study on Tele-centers location allocation problem and all the recent development in multi-facility location problem research area through more than 150 research papers from high ranked peer-reviewed journals. The research survey examines all the important parameters for the facility location problem and an objective function is also formulated for the same. Based on the survey literature, it is found that the new allocation methods based on Meta-heuristic algorithms are emerging. This study would be a useful contribution in the field of location science, Tele-center location allocation and application of Meta-heuristic algorithms in E-Governance.
    Keywords: tele-centers; location allocation; common service centers; rural kiosks; meta-heuristic algorithms; e-governance; geographical plane; ICT for Rural region.

  • Performance analysis of asynchronous priority based Internet router under self-similar traffic input queueing system with Markovian input and hyper-exponential services   Order a copy of this article
    by Malla Reddy Perati, Ravi Kumar Gudimalla 
    Abstract: In this paper, queueing behaviour of asynchronous and priority based Internet router with self-similar traffic input is analyzed. As Markov modulated Poisson process (MMPP) emulates self-similar Internet traffic, it can be used as input process of pertinent queueing system. For quality of service (QoS) guarantee in a Broadband integrated services digital network (B-ISDN), partial buffer sharing (PBS) mechanism is promising one. Since, network traffic is asynchronous and of variable packet lengths, wavelength division multiplexing (WDM) technology is to be employed, according to which, each output port is modelled as multi server queueing system. Moreover, in the modelling, service times (packet lengths) are assumed to follow more general distribution, namely, hyper-exponential (Hk) distribution with k stages in parallel of service. For the said reasons, Internet router here is modelled as MMPP/Hk/s/C queueing system employing PBS mechanism. The performance measures, namely, high priority and low priority packet loss probabilities, and mean lengths of non-critical and critical periods are computed, and presented graphically. This type of analysis is useful in dimensioning the priority based asynchronous router with self-similar traffic input.
    Keywords: Internet router; self-similarity; priority packets; partial buffer sharing; multi server queue; hyper-exponential distribution; critical and non-critical periods; loss probability.

  • On modeling hard combinatorial optimization problems as linear programs: Refutations of the "unconditional impossibility" claims   Order a copy of this article
    by Moustapha Diaby, Mark Karwan, Lei Sun 
    Abstract: There has been a series of developments in the recent literature (by essentially a same "circle" of authors) with the absolute/unconditioned (implicit or explicit) claim that there exists no abstraction of an NP-Complete combinatorial optimization problem in which the defining combinatorial configurations (such as "tours" in the case of the traveling salesman problem (TSP) for example) can be modeled by a polynomial-sized system of linear constraints. The purpose of this paper is to provide general as well as specific refutations for these recent claims.
    Keywords: Linear Programming; Combinatorial Optimization; Computational Complexity; Traveling Salesman Problem; TSP; "P vs. NP.".

  • Multiple Objective Vehicle Mix Allocation Problem a Managers Dilemma   Order a copy of this article
    Abstract: The purpose of this study is to propose, test and validate a real world multi-objective multi-criteria vehicle mix allocation problem with fixed time windows for dairy milk pick up and delivery. The proposed model consists of multiple conflicting objectives including net profit, lost sales due to non-service and in transit damage or loss, which have not been researched so far. Our proposed methodology uses a fuzzy mixed integer goal programming approach and provides a compromise satisficing solution by considering the bounded rationality of the decision maker. Sensitivity analysis is carried out to improve the overall satisfaction of the model exploring two different business scenarios including stable and volatile business environment. The paper makes significant contribution to theory and practice of milk run pick up and delivery problem with fixed time windows by integrating theoretical gap and practitioners perspective in formulation and validation of model.
    Keywords: fuzzy sets; multiple objective programming; vehicle routing problem; vehicle mix allocation; goal programming; bounded rationality; milk run; action research; dairy transportation problem; fixed time window.
    DOI: 10.1504/IJOR.2020.10014745
  • An Economic Production Quantity Model with Imperfection in Process, Unit Transportation Cost and Backordering   Order a copy of this article
    by Mubashir Hayat 
    Abstract: Determining batch quantity for manufacturer in an imperfect production setup is key issue during the last decade. Several mathematical models have been developed for this purpose but these models are lacking of the consideration of unit transportation cost in the system wide cost. It is quite clear, that nowadays the transportation account for a huge portion of the overall cost of a product. Therefore, there is a need to involve transportation cost into the model for better decision making process. In this way, the paper incorporate unit transportation cost in an imperfect environment and allowing backorders as well as random defects. Three cases have been modelled by assuming the defective rate following uniform, triangular and beta distribution. Sensitivity analysis has been carried out to point out the important specification of all the three cases of the model.
    Keywords: EPQ model; Unit transportation cost; Imperfection in process; Backordering.

  • Evaluation and ranking of the banks and Financial Institutes Using fuzzy AHP and TOPSIS techniques   Order a copy of this article
    by Mohammadreza Hasanzadeh, Changiz Valmohammadi 
    Abstract: The main purpose of this is to evaluate and rank Credit/Financial Institutes of Tehran Stock Market. The criteria were determined based on prior research and securities stock market literature and also based on the factors taken into account in stock selection. After screening the criteria, and through holding interview with experts were eight criteria were finally chosen. Using Fuzzy AHP, relative weights were calculated for each criterion and ultimately based on these weights, banks were ranked using TOPSIS. The results reveal that Bank Pasargad, Karafarin Bank, and Day Bank ranked first, second, and third respectively. One of the major concerns of those companies investing in the securities stock market is identifying the shares or collection of shares that achieve a substantial return in comparison with other companies. Since the group of banks and credit/financial institutes under investigation are among the most renowned and leading agents in Irans capital market, the obtained results could serve as a guidance for investors form one hand and the owners of the survey institutions and banks on the other hand to take necessary measures in accomplishing their objectives. This evaluation and ranking model has significant applied potentials in shares investment of a company among other similar companies in the context of Iran.
    Keywords: Securities Stock; Ranking; Multiple Criteria Decision Making (MCDM); Fuzzy Analytic Hierarchical Process (FAHP); TOPSIS; Iran.

  • Asset Management Strategies for Wind Turbines: Keeping or Retrofitting Existing Wind Turbines?   Order a copy of this article
    by Suna Cinar 
    Abstract: In this study, a parallel replacement problem with retrofitting (PRP-R) model is proposed in order to determine the trade-off between retrofitting and replacing an asset. The primary objective here is to identify the optimum replacement, maintenance, and retrofitting schedule that minimize purchasing new assets, operation and maintenance cost, and retrofitting cost under budget and production constraints resulting in a mixed-integer linear programming formulation. This model is applied to a case study involving wind turbines. Results show that due to a lower O&M cost, retrofitting is less costly than keeping the WTs. The reason for this is the high O&M cost of old WTs. In addition, the effects of key parameters such as O&M cost, retrofitting cost, budget allocated for retrofitting, governmental subsidy, and different energy demands on the optimal replacement policy on total cost are studied. This research contributes a model that can be used to determine if WT retrofitting is economically justified and provides a rigorous analytical framework for optimizing the decision-making process over the wind farm life cycle.
    Keywords: wind turbine; mixed-integer linear programming; asset management; retrofitting; optimization.
    DOI: 10.1504/IJOR.2018.10015452
  • A Game Theoretic Approach for Integrated Pricing, Lot-Sizing and Advertising Decisions in a Dual-Channel Supply Chain   Order a copy of this article
    by Javad Zarei, Morteza Rasti-Barzoki, Seyed Reza Hejazi 
    Abstract: This paper discusses the coordination of pricing, lot-sizing and advertising policies in a dual-channel supply chain including one manufacturer and one retailer. The manufacturer produces one type of product and sells it to the retailer with wholesale price and, also, directly to consumers through direct channel. Consumers buy the product with retail price from the retailer and with direct sale price from the manufacturer. Demand depends on price and advertising efforts. Decision variables of the manufacturer are the wholesale price, the direct sale price, the amount of national advertising, and the participation rate of the local advertising. Decision variables of the retailer include the retail price, the inventory cycle time and the amount of local advertising. Relationship between the manufacturer and the retailer has been modeled by two non-cooperative games of Nash and Stackelberg-retailer and one cooperative game. Finally, the change effect of the important parameters on the profit functions and the decision variables has been investigated. The results show that with increasing the cross-price sensitivity, the manufacturers equilibrium profit for the two non-cooperative games increases. However, the increase in this parameter has no effect on the retailers equilibrium profit.
    Keywords: Supply chain; Pricing; Lot-sizing; Advertising; Game theory.

  • Development of Maze Puzzle Algorithm for the Job Shop Scheduling   Order a copy of this article
    by Manhar Kagthara, Mangal Bhatt 
    Abstract: Maze Puzzle Concept has been introduced for solving job shop scheduling problem. Maze Puzzle Algorithm (MPA) is based on Rotation and Random Jumping which explores the solution space as well as exploits the solution near to optimum. Coding is done using MatLab software, Benchmark problem is evaluated for assessing efficiency of the algorithm. Results can be used for optimization of makespan for the given problem. The results are compared with other methods like GA, SA, SBI,SBII, PSO, BBO and TS, and found better than GA, SA, SB I, PSO, BBO but poor than SB-2 and TS.
    Keywords: Maze Puzzle; Optimization; Job Shop Scheduling; Makespan; MATLAB; Jumping; Rotation.

  • Inventory model based upon order criticality   Order a copy of this article
    by Kamal Sanguri, Sri Vanamalla Venkataraman 
    Abstract: For a typical distribution network we can segregate the demand at the central demand catering centre as critical if the order is triggered by a direct customer requirement and non-critical if the replenishment order is triggered for routine stocking purpose by the customer touch point. In the traditional model discussed in literature the segregation is based upon the use based criterion, with the objective of keeping the cost of ordering, shortages and inventory at a minimum level. Through this research we propose a modification of the traditional model by incorporating different classes of demand based upon their criticality while maintaining appropriate service levels to them.
    Keywords: inventory; rationing; service levels.

  • Flexible shift scheduling for a call centre using column generation   Order a copy of this article
    by Carlos Campos Amezcua, Omar G. Rojas, Emilio Zamudio Gutierrez, Elias Olivares-Benitez 
    Abstract: A shift scheduling problem for a call centre is solved by applying a column generation method. The objective is to find an employee schedule within the planning horizon that meets staffing requirements provided by the customer and that minimises the costs of excess-staffing and under-staffing. To solve the problem, two iterative models were used: the first being a mixed integer-linear programming model, the master problem, and the second being a column generation model. In a first approach, the master problem was solved considering a fixed number of shift patterns. The second approach was to use both models iteratively to generate shift patterns to be used in the master problem. Both approaches met all constraints relatively fast, but the column generation model decreased the cost considerably when cheaper shift patterns were generated. The models contribute to the current literature by providing flexibility to consider under-coverage and over-coverage at two levels.
    Keywords: shift scheduling; call centre; staffing; mixed integer linear programming; master problem; column generation; shift pattern; flexibility.

  • Reliability Models of a Series-Parallel System with Replacement at Failure   Order a copy of this article
    by Ibrahim Yusuf, Nura Khalil 
    Abstract: The paper deals with the availability analysis of a series-parallel system consisting of four subsystems: A11, B, C and A12. Subsystem B contains units b11 and b12 arranged in active parallel, subsystem C contains units c11 and g12 arranged in active parallel. The system is exposed to two types of failure. Type I failure is a unit failure called partial failure where the failed unit is replaced with new and identical one while type II is a common cause failure to either subsystem B or C in which the failed subsystem is replaced with new one. Two probabilistic models are discussed. In model I (system without common cause failure), the system has type I failure while in model II (system with common cause failure) the system has both type I and II failure. In both models, the system has three modes: full capacity, reduced capacity and failure mode. Failure and replacement rate were assumed to be exponentially distributed. Through the transition diagram, system of first order linear differential equations were developed and solved to obtain the explicit expressions for steady-state availability. At last, some numerical examples have been taken to clarify the results.
    Keywords: Availability; series-parallel; common cause failure.

  • The Second Purchase Decision under Selling Price-Sensitive Stochastic Demand and Purchasing Price Uncertainty   Order a copy of this article
    by Xiangling Hu, Jaideep Motwani 
    Abstract: It is quite common for a retailer to stock a specific quantity of a product more than once during a certain time period and then sell the product to the customers during the selling season. The retailer also has the option to make a second purchase if there is a potential profit increase on account of the purchase. However, due to the stochastic spot market purchasing price and the selling price dependent random demand, the retailer needs to determine whether a second purchase is necessary and if so what are the corresponding order time, quantity, and selling price in order to maximize the expected profit. In this paper, we develop a reality-adaptable solution algorithm to simplify the solution procedure. We also run simulations to analyze the inventory decisions and profits when a second purchase is possible.
    Keywords: Supply chain management; purchasing; pricing; Price Uncertainties; Price-Sensitive Stochastic Demand.

  • Energy-awareness scheduling of unrelated parallel machine problems with multiple resource constraints   Order a copy of this article
    by Bing-Hai Zhou, Jiaying Gu 
    Abstract: This study proposes a framework to investigate the multiple dimensions of consumer value in the context of mobile marketing, to better understand the factors impacting on mobile consumer perceived value. We primarily conducted a series of interviews based on means-end chain theory and in line with the interviews of 179 WeChat official account subscribers. Then, three-step surveys are taken; after revision and testing, the proposed scale and the final six-dimensional model (MCPV scale) emerged. In addition, another study was conducted to validate the scale model, which takes mobile advertising effectiveness, attitudes towards the official account and loyalty towards the official account as consequences of MCPV. The MCPV scale was found to be both reliable and valid; it had significant influence on mobile advertising effectiveness, and it could serve as a framework for further empirical research in the mobile marketing settings. Lastly, theoretical and practical implications were discussed.
    Keywords: multi-objective; energy consumption; resource constraints; artificial immune algorithm.
    DOI: 10.1504/IJOR.2021.10016196
  • Bargaining in a closed-loop supply chain with consumer returns   Order a copy of this article
    by Yertai Tanai, Emmanuel Dechenaux, Eddy B. Patuwo, Alfred Guiffrida 
    Abstract: The increasing quality of consumer returns creates substantial economic potential for closed-loop supply chains to extract value from returned goods. In this paper, we focus on the supply chain interaction between a retailer and a third party reverse logistics provider (3PRLP) to process consumer returns under a full refund policy. In the model, the retailer orders processed returns from the 3PRLP in exchange for a fee and then resell the processed returns. We compare an uncoordinated supply chain, in which the retailer makes a take-it-or-leave it offer of a fee to the 3PRLP, to a coordinated supply chain, in which the retailer and the 3PRLP jointly decide on the quantity of processed returns and the fee using Nash bargaining. We show that coordination leads to both a higher quantity processed and a higher fee than in the uncoordinated case. We also derive a set of sensitivity results with respect to important parameters.
    Keywords: Closed-loop supply chain; third party reverse logistics providers; supply chain coordination; consumer returns; Nash bargaining.
    DOI: 10.1504/IJOR.2021.10016197
  • Analysis of a Variant Working Vacation Queue with Customer Impatience and Server Breakdowns   Order a copy of this article
    by Vijaya Laxmi Pikkala  
    Abstract: This paper analyses an infinite buffer single server variant working vacation queueing model in which the arriving customer may balk and the server is subject to breakdown. The service times during regular busy period and working vacation period, vacation times, breakdown times and repair times are assumed to be exponentially distributed and are mutually independent. In working vacation period, the customer may renege due to impatience. We derive the probability generating function of the steady-state probabilities and obtain the closed form expressions of the system size. In addition, we obtain some performance measures and a total expected profit function per unit time is designed to determine the optimal values at the maximum profit. We employ the particle swarm optimisation method to solve the profit optimisation problem.
    Keywords: Queue; Balking; Reneging; Variant Working Vacations; Server breakdowns; PSO.
    DOI: 10.1504/IJOR.2021.10016198
  • Efficiency Measurement of Canadian Oil and Gas Companies   Order a copy of this article
    by Mohamed Dia, Pawoumodom Matthias Takouda, Amirmohsen Golmohammadi 
    Abstract: In this study, we perform an efficiency analysis of Canadian oil and gas firms. Using data envelopment analysis, technical, managerial and scale scores from ten samples built from 110 oil and gas companies, listed in Canadian stock exchanges, are computed for the years 2012, 2013, 2014, and 2015. Our analysis, supported by appropriate statistical tests, confirms that the Canadian oil and gas industry exhibited predominantly low overall technical efficiency levels both for each of the years and overall for the four years. We have observed that the main source of inefficiencies was the management of operations. In addition, we have seen consistently that across the samples, a statistically significant relationship exists between the efficiency scores and the size of the companies. Finally, we have observed the existence of a relationship between the efficiency scores and the type of producer (pure oil vs. oil and gas), but we could not reach conclusions on the best performer that was consistent across the samples.
    Keywords: Data Envelopment Analysis; Efficiency; Oil and Gas companies; Canada.
    DOI: 10.1504/IJOR.2021.10016199
  • A dynamic programming approach for solving the economic lot scheduling problem with batch shipments   Order a copy of this article
    by Christoph Glock, Fabian Beck 
    Abstract: This note investigates the economic lot scheduling problem (ELSP) with batch shipments. It first modifies an existing formulation of the ELSP to account both for the cases of equal-sized and geometrically increasing batch shipments, and it then adapts the popular dynamic programming approach of Bomberger to the new planning situation. In addition, the paper specifies some steps of Bomberger's solution procedure that had been formulated imprecisely in the original publication of the author. The paper compares the solution approach proposed in this note to the popular methods of Hanssmann as well as Haessler and Hogue in a numerical experiment and highlights the influence of the batch shipments on the relative performance of the solution procedures. Our results show that the proposed modification reduces the performance disadvantage of Bomberger's basic period approach, which may be interesting especially for practitioners that are interested in an easy-to-apply procedure for solving the ELSP in practice. Our changes to Bomberger's solution procedure support finding the lowest total cost solution that had not always been obtained in earlier publications.
    Keywords: Economic Lot Scheduling Problem; Bomberger’s method; Basic-Period-Approach; batch shipments; dynamic programming.
    DOI: 10.1504/IJOR.2021.10016200
    by Dinesh K. Sharma, S.K. Yadav, S.S. Mishra 
    Abstract: In this paper, we propose an estimator that utilises the known value of the population median of the study variable under simple random sampling without replacement (SRSWOR). As per requirement and for comparison, we derived the bias and mean squared error (MSE) of the proposed estimator to the first degree of approximation. The optimum values of the characterising constants involved in the proposed estimator were also obtained. The characterising scalar may take different values which results in different values of MSE of proposed estimator; therefore its optimum value was obtained. The least value of MSE of proposed estimator is derived for this optimum value of characterising constant. Efficiency comparison of the proposed estimator has been made with other existing competing estimators of the population mean which makes use of auxiliary information under SRSWOR. Theoretical findings regarding the proposed estimator have been verified through the numerical study. It has been shown through a numerical example that the proposed estimator has the least MSE among other existing competing estimators of the population mean of the study variable.
    Keywords: Population median; Auxiliary variable; Bias; Mean Squared Error; Relative efficiency.
    DOI: 10.1504/IJOR.2021.10016339
  • A Linear Algorithm for a Minimax Location of a Path-Shaped Facility with a Specific Length in a Weighted Tree Network   Order a copy of this article
    by Fatma Elsafty, Abdallah Aboutahoun 
    Abstract: This paper considers the problem of locating a path-shaped facility of a specific size on a weighted tree network. The criterion for optimality used in this paper is the minimax criterion in which the weighted distance to the farthest vertex from the facility is minimised. The minimax criterion gives acceptable results from the point of view of the fast response for the clients who are located far away from the facility. This location problem usually has applications in computer science, information science, and operations research. An O(n) time algorithm is proposed for finding the optimal location of a path-shaped facility of a bounded length on a weighted tree network, where n is the number of vertices in the tree.
    Keywords: Tree network; facility location; minimax criterion; central path.
    DOI: 10.1504/IJOR.2021.10016889
  • Developing a new chance constrained modified ERM model to measure performance of repair and maintenance groups of IRALCO   Order a copy of this article
    by Mohammad Izadikhah 
    Abstract: Evaluating the performance of repair and maintenance groups is recognised as a key component of improving the strategic and operational levels. The purpose of this paper is to develop a model to evaluate the maintenance groups of IRALCO. Data envelopment analysis (DEA) is a useful method for measuring performance of repair and maintenance groups. However, in real problem there might be stochastic data. For this purpose, this paper presents a new stochastic modified enhanced Russell measure (ERM) model to measure performance of repair and maintenance groups. An important property of the proposed model is stated and proved as a proposition. A case study demonstrates applicability of our approach.
    Keywords: Data envelopment analysis (DEA); Chance-constrained data envelopment analysis; Stochastic DEA; Efficiency; Stochastic data.
    DOI: 10.1504/IJOR.2021.10016708

Special Issue on: Advances in Operations Research

  • A Postponed Inventory System with Modified M Vacation Policy   Order a copy of this article
    by Padmavathi I, Sivakumar B 
    Abstract: In this article, we analyse a postponed inventory system with a single server under modified M vacation policy, where the server can take atmost M inactive mode. We assume the demand process follows a Markovian Arrival Process and (s, S) ordering policy with exponential lead time. During the inactive mode, the server can be idle or go on vacation, which occurs due to the depletion of inventory. In every inactive mode, server avails an inactive idle period first followed by a vacation period. Inactive idle period and vacation period follow independent phase type distribution. The demand that arrives during the server inactive mode enters the pool of infinite size. The server selects a demand one by one on FCFS rule from the pool, as long as the inventory level is greater than the reorder point and inter selection time follows exponential distribution. A quasi birth and death process is formulated to analyse the system and solved by using the matrix-geometric method. We explicit some system performance measures on the steady state and some illustrative examples are discussed numerically.
    Keywords: Postponed inventory system; (s; S) ordering policy; modified vacation policy; Matrix-geometric method.

  • Dynamic Analysis to Set Idle Time between jobs on a Single Machine   Order a copy of this article
    by Senthilvel A N, Umamaheswari S, Arumugam C 
    Abstract: Scheduling problems are common phenomena in everyday life. Ordering of jobs or tasks to satisfy the constraint determines a schedule. The problem considered here is to find the optimal schedule so as to minimize the earliness and tardiness penalties. This paper proposes a technique to insert the idle time as tight as possible while meeting due date. The penalty, through the insertion of the idle time, is minimized on its own upto the point where no further minimization is achieved. The proposed algorithm gives rise to the set of upper and lower bounds on the objective function value of randomly generated problem set. The proposed algorithm partitions the set of jobs into subsets. Each subset can be scheduled in parallel and grouped later. To prove the effectiveness of the algorithm, 400 sets of different sizes ranging from 15 Jobs to 100 Jobs are solved. The proposed method can be used as a benchmark for future approaches in the area of specific due date scheduling.
    Keywords: Scheduling Algorithm; Job Sequencing; NP Class; Heuristic approach; Idle Time; Global Optimization.

  • Self-Adaptive Bee Colony Optimisation Algorithm for the Flexible Job Shop Scheduling Problem   Order a copy of this article
    by Malek Alzaqebah, Salwani Abdullah, Rami Malkawi, Sana Jawarneh 
    Abstract: The bee colony Optimisation (BCO) algorithm is a nature-inspired algorithm that models the natural behaviour of honey bees as they find nectar and share food sources information with other bees in the hive. This paper presents the BCO algorithm for the flexible job-shop scheduling problem (FJSP), in addition, to improve the neighbourhood search in the BCO algorithm we introduce a self-adaptive mechanism to the BCO algorithm (self-adaptive-BCO algorithm) for adaptively selecting the neighbourhood structure to enhance the local intensification capability of the algorithm and to help the algorithm to escape from a local optimum. We carry out extensive computational experiments on three well-known benchmarks for flexible job-shop scheduling. The BCO algorithm is compared with the self-adaptive-BCO algorithm to test the performance of the latter. The results demonstrate that the self-adaptive-BCO algorithm outperforms the BCO algorithm, the proposed approach also outperforms the best-known algorithms in some datasets and it is comparable with these algorithms in other datasets.
    Keywords: bee colony Optimisation; flexible job shop; adaptive neighbourhood search strategy.

  • Solving industrial multiprocessor task scheduling problems using an improved monkey search algorithm   Order a copy of this article
    Abstract: This paper addresses multiprocessor task scheduling in a multistage hybrid flow shop environment which has been proved to be strongly NP-hard. An improved monkey search algorithm (IMSA) is proposed to solve this problem. The objective is to minimize the makespan which is the completion time of all the tasks in the last stage. The proposed algorithm is tested with three types of problems. A real industrial data is first used. Then, random problem instances are generated and finally, the benchmark problems addressed in literature are also considered. In all the three cases, the results are compared with earlier reported algorithms in the literature and the computational results reveal that the proposed algorithm is competent.
    Keywords: scheduling; hybrid flow shop; multiprocessor tasks scheduling; NP-hard; monkey search algorithm; makespan.

  • A Developed Multicriteria Group Decision Making Method Based on Interval Valued Hesitant Fuzzy Linguistic Term Sets and Mentality Parameter   Order a copy of this article
    by Nesrin Halouani 
    Abstract: Hesitant Fuzzy Linguistic Term Set (HFLTS) can be considered as a very practical tool in addressing decision problems where people are hesitant to provide their linguistic assessments while avoiding the possible loss of information. Therefore, HFLTS enhances the flexibility to get and represent linguistic information. This paper deals with this kind of decision making problems by proposing the concept of Interval Valued Hesitant Fuzzy Linguistic Term Sets (IVHFLTS) since it can be considered as an extension of both a linguistic term set and an interval-valued hesitant fuzzy set. This new combination deals with both quantitative and qualitative evaluations. By introducing the mentality parameter for IVHFLTS, we develop a multicriteria group decision making model to deal with hesitant fuzzy linguistic information which avoids the possible loss of information. In order to show the applicability and the efficiency of the proposed method, an example for the selection of the best alternative is given as well as the ranking of the alternatives from the best to worst. The promising numerical results prove that this model is available.
    Keywords: Multicriteria Group Decision Making; Hesitant Fuzzy Linguistic Term Sets; mentality parameter; valued interval.