Forthcoming articles


International Journal of Computational Systems Engineering


These articles have been peer-reviewed and accepted for publication in IJCSysE, but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.


Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.


Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.


Articles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.


Register for our alerting service, which notifies you by email when new issues of IJCSysE are published online.


We also offer RSS feeds which provide timely updates of tables of contents, newly published articles and calls for papers.


International Journal of Computational Systems Engineering (17 papers in press)


Regular Issues


  • Need for RADAR System Utilization for Maritime Traffic Management: A case of Congo River Basin   Order a copy of this article
    by Habib Ullah Khan, Oduniyi Ayotunde Adediji 
    Abstract: Maritime traffic management has emerged as a new challenge along with the developments going on in the world. It has always been a task to maintain the productivity in the ports along with the maintenance of safety and security. The present study concentrated on such measures for the maritime traffic management on the Congo River Basin with the help of RADAR technology. It aimed to know the intensity of the issue as well as necessity for such system in lieu of old procedures to meet the growing mishaps and traffic. The study collected the opinion of the personnel of maritime department as primary data and the secondary data is collected from the records of CICOS and SCTP departments. The data is analysed using the analysis of variance technique to know whether there is increase in the untoward incidents and the traffic among the three countries connected to this basin. The results of the analysis showed the role of human errors in the occurrence of the mishaps and the personnel also opined to install the RADAR system to control this. The results of ANOVA are tested for the p-value at 5% level of significance and showed a significant increase among the accidents and deaths on the Congo River Basin from the years 2008 to 2012. The data of the traffic of passengers and the goods for the years 2010 to 2012 also showed similar trend highlighting the necessity for the efficient measures by employing strict rules and by installing new systems with the help of RADAR technology.
    Keywords: Democratic Republic of Congo (DRC); Central Africa Republic (CAR); Congo Republic (RC); International Maritime Organization (IMO); Commission Internationale du Bassin Congo-Oubangui-Sangha (CICOS); Societe Commerciale des Transports et des ports (SCTP).

  • Finding the Best Bug Fixing Rate and Bug Fixing Time Using Software Reliability Modelling   Order a copy of this article
    by Rama Rao 
    Abstract: This article is mainly focused on finding the best possible way to rectify Bug Fixing Rate (BFR) and Bug Fixing Time (BFT). Further, versatile software projects have been verified when materializing the bug fixing rate. To increase the bug fixing rate, bug traceability is reduced by virtue of version tag in each and every component of a software deliverable. Software build release time is optimized by using mathematical optimization techniques such as software reliability growth and non-homogeneous poisson process models. This is very much essential in present market scenario. The build inconsistency and automation are also rectified in this erudite research work. The developed software is free from defects and improves the software quality by increasing bug fixing rate.
    Keywords: Bug Fixing Rate; Bug Fixing Time; Bug Traceability Time; Software Build Automation; Software Reliability; Version Tag; Software Risk and Version Control System.

  • Evolutionary Optimisation to Minimise Material Waste in Construction   Order a copy of this article
    by Andy Connor, Wilson Siringoringo 
    Abstract: This paper describes the development and evaluation of a range of metaheuristic search algorithms applied to the optimal design of two-dimensional layout problems, with the particular application on residential building construction. Results are presented to allow the performance of the different algorithms to be compared in the pareto-optimal solution space, with resulting solutions identified and analysed in the objective space. These results show that all of the algorithms investigated have the potential to be applied to optimise material layout and improve the design processes used during building construction.
    Keywords: Metaheuristic algorithms; Evolutionary computation; Layout optimisation; Residential construction.

  • Study and Analytical Perspective on Big Data   Order a copy of this article
    by Yashika Goyal, Yuvraj Monga, Mohit Mittal 
    Abstract: From past era, a great advancement has been envisioned in the technological world. It is exponentially expanding in field of virtualization. Due to this, every field comes under digitalization. Wired as well as wireless communication is completely working on digitalized form. Conclusively, expansion of huge amount of data has been seen. To manage these large chunks of information scientists and research are focused on Big Data. Big data has capability for paradigm shift of the prevalent IT services. In this paper, we will focus on terminology of big data, applications and various tools used to manage big data
    Keywords: Data; Big Data Analytics; Data Mining; Big Data applications; Big Data tool; Future trends.

Special Issue on: New Challenges in Intelligent Computing and Applications

  • Dynamic Priority based Packet Handling protocol for Healthcare Wireless Body Area Network system   Order a copy of this article
    by Sapna Gambhir, Madhumita Kathuria 
    Abstract: The vision of Wireless Body Area Network (WBAN) is to facilitate, improve, and have an immense impact on healthcare system in terms of identifying the risk level or severity factor of a patient in various emergencies. Modern and technical advances in WBAN revolutionize this area for autonomous monitoring of vital signals for a longer duration as well as from a remote place. However, handling of heterogeneous packets in a fast changing healthcare scenario has continued to be an opportunity for exploration. We present a novel concept of Dynamic Priority based Packet Handling (DPPH) which promises to add exciting capabilities to the world of WBANs. DPPH uses the principles of accurate identification and classification of heterogeneous packets to effectively determine patients critical condition and alerts the medical server. In this paper, we have focused on dynamic prioritization based queuing, scheduling, resource allocating and alerting policies for performance enhancement. The proposed approach is validated through a comparison with the existing approach. The performance of the proposed protocol is implemented using a network simulator NS-2.35 and is judged on the basis of packet delivery ratio, loss ratio, end-to-end delay, and throughput, with variation in nodes.
    Keywords: Alert; Abnormal condition; Weighted Deviation; Detection; Prioritization;Packet Handling;Vital signal; Wireless Body Area Network.

Special Issue on: Biomedical Signal and Imaging Trends and Artificial Intelligence Developments

  • A Computerized Framework for prediction of fatty and Dense Breast Tissue Using Principal Component Analysis and Multi-resolution Texture Descriptors   Order a copy of this article
    by Indrajeet Kumar, Harvendra Singh Bhadauria, Jitendra Virmani 
    Abstract: The present work proposes a computerized framework for prediction of fatty and dense breast tissue using principal component analysis and multi-resolution texture descriptors. For this study 480 MLO view digitized screen film mammograms have been taken from the DDSM dataset. A fixed ROIs size of 128
    Keywords: Mammography; Breast density classification; Multi-resolution texture descriptors; principal component analysis; Support vector machine (SVM) classifier.

  • GPU-based Focus-Driven Multi-coordinates Viewing System for Large Volume Data Visualization   Order a copy of this article
    Abstract: The advancements in biomedical scanning modalities such as Computed Tomography (CT), Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) are improving in their resolution day by day. The newly physicians may face some problem rely on exploring 2D slices and diagnosing with 3D full humans anatomy structure at the same time. In this paper, we are presenting a generalized contactless interactive Graphics Processing Unit (GPU) accelerated Compute Unified Device Architecture (CUDA) based focus and context visualization approach with displaying the inner anatomy of the large scale visible human male dataset in Multi-Coordinate Viewing System (MCVS). The focusing area has been achieved by 3D Cartesian Region of Interest (ROI). The large dataset has been structured by using Octree method. The volume rendering part has been done by using an improved ray intersection cube method for voxels with the ray casting algorithm. The final results would allow the doctors to diagnose and analyze the atlas of 8-bit CT-scan data using three dimensional visualization with the efficient frame rate rendering speed in multi-operations like zooming, rotating, dragging. The system is tested for multiple types of 3D medical datasets ranging from 10 MB to 3.15 GB. Medical practitioners and physicians are able to peer inside of the dataset to use the features of the inner information. This system is further tested with three NVIDIA CUDA enabled GPU cards for the performance analysis. The scope of this system is to explore of the human body for surgery purpose.
    Keywords: Volume Visualization; Focus-driven; MCVS; Focus and Context; MRI dataset; Medical dataset;.

  • Volumetric Tumor Detection Using Improved Region Grow Algorithm   Order a copy of this article
    by Shitala Prasad, Shikha Gupta 
    Abstract: This paper works on segmentation of brain pathological tissues (Tumor, Edema an Narcotic core) and visualize it in 3D for their better physiological understanding. We propose a novel approach which combines threshold and region grow algorithm for tumor detection. In this proposed system, FLAIR and T2 modalities of MRI are used due to their unique ability to detect the high and low contrast lesions with great accuracy. In this approach, first the tumor is segmented from an image which is a combination of FLAIR and T2 image using a threshold value, selected automatically based on the intensity variance of tumor and normal tissues in 3D MR images. Then the tumor part is extracted from the actual 3D MRI of brain by selecting the largest connected volume. To correctly detect tumor 26 connected neighbors are used. The method is evaluated using a publically available BRAT dataset of 80 different patients having Gliomas tumors. The accuracy in terms of detection is reached to 97.5\% which is best compared to other state-of-the-art in given time frame. The algorithm takes 4-5 minutes for generating the 3D visualization for final output.
    Keywords: 3D Volumetric; Brain Tumor; Region Growing Algorithm; Thresholding; Volexl Seeding.

  • Multimodality Medical Image Fusion using Nonsubsampled Rotated Wavelet Transform for Cancer Treatment   Order a copy of this article
    by Satishkumar Chavan, Abhijeet Pawar, Sanjay Talbar 
    Abstract: This paper presents nonsubsampled rotated wavelet transform (NSRWT) based feature extraction approach to multimodality medical image fusion (MMIF). The nonsubsampled rotated wavelet filters are designed to extract textural and edge features. These filters are applied on axial brain images of two modalities namely Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) to extract spectral features. These extracted features are selected using entropy-based fusion rule to form new composite spectral feature plane. Entropy-based fusion rule preserves dominant spectral features and imparts all relevant information from both the modalities to the fused image. The inverse nonsubsampled rotated wavelet transform is applied to reconstruct fused image from the composite spectral slice. The proposed algorithm is evaluated using 39 pilot image slices of 23 patients subjectively and objectively for efficient fusion. Three expert radiologists have verified the subjective quality of fused image to ascertain anatomical structures from source images. Subjective score by radiologists reveals that the fused image using proposed algorithm is superior in terms of visualization of abnormalities over other wavelet based techniques. The objective evaluation of fused images involves estimation of fusion parameters like image quality index (IQI), edge quality measure (EQa,b), mean structural similarity index measure (mSSIM), etc. The proposed algorithm presents better performance metrics over the state of the art wavelet based algorithms.
    Keywords: Multimodality Medical Image Fusion; Discrete Wavelet Transform; Rotated Wavelet Filters; Nonsubsampled Rotated Wavelet Transform; Cancer Treatment; Radiotherapy.

  • Comparison of feature extraction techniques for classification of hardwood species   Order a copy of this article
    by Arvind R. Yadav, R.S. Anand, M.L. Dewal, Sangeeta Gupta, Jayendra Kumar 
    Abstract: The texture of an image plays an important role in identification and classification of images. The hardwood species of an image contains four key elements namely, vessels (popularly known as pores in cross-section view), fibers, parenchymas and rays, useful in its identification and classification. Further, the arrangements of all these elements posses texture rich features. Thus, in this work investigation of existing texture feature extraction techniques for the classification of hardwood species have been done. The texture features are extracted from grayscale images of hardwood species to reduce the computational complexity. Further, linear support vector machine (SVM), radial basis function (RBF) kernel SVM, Random Forest (RF) and Linear discriminant analysis (LDA) have been employed as classifiers to investigate the efficacy of the texture feature extraction techniques. The classification accuracy of the existing texture descriptors has been compared. Further, Principal component analysis (PCA) and minimal-redundancy-maximal-relevance (mRMR) feature selection method is employed to select the best subset of feature vector data. The PCA reduced feature vector data of co-occurrence of adjacent local binary pattern (CoALBP24) texture feature extraction technique has attained maximum classification accuracy of 96.33
    Keywords: Texture features; support vector machine; feature selection; hardwood species.

  • Myoelectric Control of Upper Limb Prostheses using Linear Discriminant Analysis and Multilayer Perceptron Neural Network with Back Propagation Algorithm   Order a copy of this article
    by Sachin Negi, Yatindra Kumar, V.M. Mishra 
    Abstract: Electromyogram (EMG) signals or myoelectric signals (MES) have two prominent areas in the field of biomedical instrumentation. EMG signals are primarily used to analyse the neuromuscular diseases such as myopathy and neuropathy. In addition the EMG signal can be utilized in myoelectric control systems- where the external devices like upper limb prostheses, intelligent wheelchairs, and assistive robots can be controlled by acquiring surface EMG signals. The aim of present work is to obtain classification accuracy first by using linear discriminant analysis (LDA) classifier where principal component analysis (PCA) and uncorrelated linear discriminant analysis (ULDA) feature reduction techniques are used for upper limb prostheses control application. Next the multilayer perceptron (MLP) neural network with back propagation algorithm is used to calculate the classification accuracy for upper limb prostheses control.
    Keywords: EMG; MCS; LDA; PCA; ULDA; MLP; Back propagation.

  • Comparative Study of LVQ and BPN ECG Classifier   Order a copy of this article
    by Ashish Nainwal, Yatindra Kumar, Bhola Jha 
    Abstract: ECG is the electrical waveform og heart activity.It contains much information on Heart disease. It is very important to diagnosis the heart disease as soon as possible otherwise it can be harmful to patient. This paper presents to classify ECG signal using learning vector quantization and Beck propagation neural network and feature of ECG (morphology and frequency Domain) features.In this paper the 45 ECG signals from MIT- BIH arrhythmia database are used to clssify in to two classes,one is normal and another one is abnormal using above mentioned classifier. Out of 45 signals 25 are normal and 20 are abnormal according to MIT-BIH. 28 morphological features and 4 frequency domain features are set as an input to the classifier. The performance of classifier measures in the terms of Sensitivity (Se), Positive Predictivity (PP) and Specificity (SP). The system performance is achieved with 82.35% accuracy using LVQ and 94.11% using BPN.
    Keywords: Back Propagation Neural Network; Learning Vector Quantization; ECG;rnMIT-BIH.

Special Issue on: Data Analysis for Enabling Technological and Computational Enhancement in Design and Optimisation in Various Engineering Domains

  • Design of PID Controller for Magnetic Leviation System using Modified Gravitational Search Algorithm   Order a copy of this article
    by Ankush Rathore, Harish Sharma, Manisha Bhandari 
    Abstract: Gravitational Search Algorithm (GSA) is a swarm intelligence based algorithmrnwhich is inspired from the law of motion and law of gravity. GSA leads to the lossrnof the exploitation capability. To find a trade-off between exploration and exploitation capabilities of GSA, a modified gravitational search algorithm is proposed namely Exponent Inertia Weight based GSA (EIWGSA). The proposed algorithm maintains a proper balance between the exploitation and exploration skills of GSA by introducing an exponent inertia weight(EIW) parameter. The proposed algorithm is implemented over 15 benchmark functions and compared with basic GSA, BBO and PSO algorithm. Then, the MGSA algorithm is applied to design of PID controller for the magnetic leviation system over a wide difference operating air gap as 3mm, 10mm and 17mm.
    Keywords: Gravitational Search Algorithm; Swarm Intelligence; Inertia Weight; Magnetic Leviation System.

  • CloudCampus: building an ubiquitous Cloud with classroom PCs at an university campus   Order a copy of this article
    by Andre Monteiro, Claudio Teixeira, Joaquim Sousa Pinto 
    Abstract: While Cloud Computing is still a developing paradigm, many of the existing challenges point to new research trends, as resource and power saving. Current datacentres are being used more efficiently, new hardware tries to comply with energy saving and software helps to fulfil these goals. On the other hand, the resource optimization can also be undertaken by maximizing the existing resources, even if not intended for cloud purposes or have state-of-the-art hardware. This paper investigated how to integrate common desktop PCs, with a wide cardinality inside a university campus, on a Cloud infrastructure to lower cost efforts, and how to deliver appropriate services to researchers. We propose a model to categorize applications, show how to build the infrastructure and present performance and consumption results.
    Keywords: Distributed applications; resource management; scheduling; performance evaluation.

  • Fast and Effective Image Retrieval using Color and Texture Features with Self Organizing Map   Order a copy of this article
    by Vibhav Prakash Singh, Ashim Gupta, Rajeev Srivastava 
    Abstract: Content based image retrieval is an emerging area in computer vision, in which we retrieve similar images from the huge set of database on the basis of their own visual content. Most of the image retrieval systems are still, incapable of providing better retrieval results in less searching time. In this paper, we introduce Self Organizing Map (SOM) clustering approach with fusion of features. Using SOM, system performances are improved by the learning and searching capability of the neural network. Here, first we extract color moment, color histogram, local binary pattern, color percentile, and wavelet transform based color and texture features. All these features are computationally light weighted, speedup the process of image indexing. Hereafter, all these features sets are fused together with equal weight. Then, these hybrid features are fed to SOM which generates clusters of images, having similar visual content. SOM produces different clusters with their centers. Further, query image content are matched with all cluster representative to find closest cluster. Finally, images are retrieved from this closest cluster using similarity measure. So, at the searching time the query image is searched only in small subset depending upon cluster size and is not compared with all the images in the database, reflects a superior response time with good retrieval performances. Experiments on benchmark database show that the proposed clustering with hybrid features performs significantly encouraging.
    Keywords: Feature Extraction; Self Organizing Map; Content Based Image Retrieval; Searching; Similarity Measure.

  • TripletDS: A prototype of dataspace system based on triple data model   Order a copy of this article
    by Mrityunjay Singh, S.K. Jain 
    Abstract: A dataspace system provides a powerful mechanism for searching and querying the structured, semi-structured, and unstructured data in an integrated manner. This paper aims to build a prototype called as Triplet Dataspace System (TripletDS) to provide an on-demand large scale data integration solution with less effort. The TripletDS is a prototype of dataspace system based on triple model. The triple model is a simple and flexible data model which supports the Subject-Predicate-Object (SPO) query language. The proposed prototype has the ability to efficiently bridge the gaps between syntactic and structural heterogeneity among data. The performance of TripletDS has been verified on the data sets including personal data and relational data.
    Keywords: TripletDS; Dataspace; TripletDSpace; Triple Model; DSP Tool; Transformation Rules.

  • A Fireworks Algorithm for Solving Traveling Salesman Problem   Order a copy of this article
    by Zoubair Taidi, Lamia Benameur, Jihane Alami Chentoufi 
    Abstract: In this paper, a novel swarm intelligence algorithm inspired by observing fireworks explosions, called Fireworks Algorithm (FW), is proposed for solving the traveling salesman problem (TSP). The TSP is a well-known NP-hard combinatorial optimization problem. The problem is easy to state, but hard to solve. Many real-world problems can be formulated as instances of the TSP, for example, computer wiring, vehicle routing, crystallography, robot control, drilling of printed circuit boards and chronological sequencing. The proposed algorithm has been performed on TSP instances taken from TSPLIB library and has been compared with other methods in the literature. Computational results showed that the proposed firework algorithm is competitive in terms of quality of the solutions compared to other techniques.
    Keywords: Meta-Heuristic; Fireworks Algorithm; Optimization; Swarm Intelligence; Traveling salesman problem.