An enhanced model for reliable deflection routing in mesh network on chip
by Simi Zerine Sleeba; M.G. Mini
International Journal of High Performance Systems Architecture (IJHPSA), Vol. 7, No. 2, 2017

Abstract: Massive integration of processing cores into a finite chip area increases the possibility of damage and failure of various chip components. Issues and solutions related to reliable on chip communication is of great importance in this context. On chip routers play a vital role in routing packets through the NoC. In this paper, we propose a new fault tolerant routing model for NoCs using deflection routing mechanism. This model intelligently utilises fault-free unidirectional links between the routers to forward flits to their destinations in a few number of hops. These links are activated at regular time intervals so that they serve as alternate productive paths for flits which are delayed due to faults in their computed routes. We also present a routing algorithm that exploits the path diversity in the network generated by the enhanced model. From experimental analysis, we obtain significant improvement in the network performance parameters like flit latency, deflection rate and dynamic energy dissipation across router links for the proposed model compared to the state-of-the-art fault tolerant routing methods in NoC.

Online publication date: Fri, 06-Oct-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of High Performance Systems Architecture (IJHPSA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com