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This paper compares five existing methods for pretest item selection in online
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1 Introduction

As a long-term testing program continues, its item bank needs to be replenished regularly

by replacing overexposed, obsolete, or flawed items with new items. When item response

theory (IRT) is used to model test data, these new items need to be calibrated before being

used operationally. In other words, their parameters need to be estimated and placed on the

same scale as the operational items. Although it is possible to recruit examinees for the sole

purpose of calibrating new items, a more cost-effective approach is to embed the new items

in operational tests. This approach can also ensure that the examinees are almost equally

motivated as in operational tests. Additionally, online calibration can be used if some of

the operational items need to be recalibrated due to potential item parameter drift, which

means their parameters may have changed through repeated administrations.

When applied in a computerised adaptive test (CAT) (Chang, 2004; Wainer, 2000),

the aforementioned approach is specifically referred to as online calibration (Stocking,

1988). Analogous to the tailored testing feature in CAT where an optimal set of operational

items is selected for each examinee to more efficiently estimate their ability levels, online

calibration makes it possible to select an optimal sample of examinees for each pretest item

to hopefully calibrate their parameter values more efficiently.

The exploration of online calibration methods started as early as almost three decades

ago (Stocking, 1988), and researchers have mainly investigated two aspects of online

calibration:

1 statistical methods for estimating item parameters in the online calibration setting

2 pretest item selection and seeding design.

The first aspect has been studied extensively (Ban et al., 2001, 2002; Chen et al., 2012;

Chen and Wang, 2016; Segall, 2003; Stocking, 1988), whereas the second aspect is still

being explored. To date several pretest item selection designs have been proposed (Chang

and Lu, 2010; Chen et al., 2012; Kingsbury, 2009; Linden and Ren, 2015; Zheng, 2014),

but there has not been a consensus regarding the optimal practices in various situations.

The purpose of this study is to compare five existing pretest item selection methods

proposed in the recent literature through computer simulation under various settings.

The remaining of the paper is organised in the following way: first an overview of

online calibration is provided. Then the five compared pretest item selection methods are

reviewed, which include:

1 random selection

2 the ‘examinee-centred’ method
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3 the original D-optimal method

4 the Bayesian D-optimal design (Linden and Ren, 2015)

5 the ordered informative range priority index method (Zheng, 2014).

Finally, the simulation study that compares the five methods under one-, two-, and three-

parameter logistic models, across two estimation methods, three seeding locations, and

five calibration sample sizes are presented. Results reveal varied patterns under different

treatment conditions. The findings are useful in not only the CAT context but also all the

other computerised testing modes.

2 Overview of online calibration

The general procedure of online calibration for item bank replenishment is summarised by

Figure 1. As the figure presents, Steps 1–3 pertain to preparing the pretest item bank. To

recalibrate some operational items instead of replenishing the item bank, just skip Steps 2

and 3. Step 4 is the sampling step: during the operational test, when an examinee reaches

a seeding location, pretest items are selected from the pretest item bank based on certain

item selection rules. When the examinee finishes the test, Step 5 is carried out, where the

item parameters of those administered pretest items are updated. Steps 4 and 5 are repeated

for every new examinee, and the sampling outcome is constantly adjusted based on the

updated parameter values. The sampling process of each pretest item can be terminated

and the item be exported from the pretest item bank separately once a satisfactory accuracy

of the parameter estimates is achieved or the maximum sample size is reached. As a final

step (Step 6), the exported pretest items are reviewed and if approved, put into operational

use.

Figure 1 The steps of item bank replenishment (see online version for colours)
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Note that because any adaptive item selection rule adopted in Step 4 relies on

provisional item parameter values, initial item parameters are needed at the first time. There

are multiple ways to obtain initial parameter estimates. For example, item developers may

provide educated guesses of the parameter values or an initial random selection phase can

be implemented, at the end of which item parameters are estimated and to be taken to the

next adaptive selection phase as the initial parameter values (Ban et al., 2001; Chen et al.,

2012; Kingsbury, 2009).

Also note that in real applications of large-scale testing programs, it is possible that

several examinees are taking the test almost simultaneously. This scenario is compatible

with the online calibration workflow above because the calibration and update of the pretest

item parameters do not have to be carried out after each individual examinee finishes

his/her test. The new response data can be simply recorded, and calibration can be carried

out after a batch of new data is obtained. In fact, this batch-based workflow is expected to

be preferred for its ease on server computation load.

The aforementioned process belongs to the family of sequential optimal sampling

design (Berger, 1992; Buyske, 2005; Jones and Jin, 1994). Similar methods have also

been used in medical trials for decades to save research cost and time (Armitage, 1975).

Given limited resources (e.g. examinees, time), this sequential optimal sampling design

could potentially increase the accuracy of the calibrated item parameters. In other words,

to achieve the same calibration accuracy, fewer examinees may be required than that is

required in simple random sampling, the latter being typical in traditional paper-and-pencil

non-adaptive tests. Moreover, by assigning different pretest items to each individual, this

adaptive online calibration should pose less test security risk than assigning the same block

of pretest items to a convenient sample (e.g. a school, a district) as often done in paper-

and-pencil tests.

3 Review of existing pretest item selection methods

The existing pretest item selection methods in online calibration can be summarised into

three categories:

1 random selection

2 examinee-centred adaptive selection

3 item-centred adaptive selection.

3.1 Random selection method

With random item selection (Ban et al., 2001), pretest items are randomly selected when a

examinee reaches the seeding locations in the test. This method is the easiest to carry out,

and when the sample size is large enough, it renders a calibration sample that follows a

similar distribution as the examinee population.
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3.2 Examinee-centred adaptive selection methods

With an examinee-centred adaptive selection method, pretest items are selected by the

same item selection method as used for selecting operational items (Chen et al., 2012;

Kingsbury, 2009). The operational item selection criteria in CAT are designed to optimise

the estimation of examinee abilities (therefore this method is called ‘examinee-centred’

here), but not for the purpose of calibrating pretest items.

Conceptually, the examinee-centred method should be a reasonable choice for the one-

parameter logistic (1PL) model. The item response function for the 1PL model is

Pj(θi) =
1

1 + exp [−(θi − bj)]
, (1)

where Pj(θi) denotes the probability of examinee i correctly responding to item j, θi
denotes the ability level of examinee i, and bj denotes the difficulty of item j. A typical

1PL CAT optimises the estimation efficiency of examinee ability estimation by matching

the item difficulty b with the estimated examinee’s ability level θ̂. It is easy to see from the

model equation that using the same method for selecting pretest items will also optimise

the estimation efficiency of item parameter calibration.

However, in other IRT models, the θ values that constitute the optimal samples are

different for each item parameter. For example, a three-parameter logistic (3PL) model

(Eq. 2) item j has three parameters: the discrimination parameter (aj), the difficulty

parameter (bj) and the pseudo-guessing parameter (cj).

Pj(θi) = cj +
1− cj

1 + exp [−aj(θi − bj)]
. (2)

The Fisher information for estimating the three item parameters, Iaaij for the a-parameter,

Ibbij for the b-parameter and Iccij for the c-parameter, is given below (Hambleton et al.,

1991).

Iaaij = −E

[

∂2ℓij
∂aj∂aj

]

= (θi − bj)
2
1− Pj(θi)

Pj(θi)

[

Pj(θi)− cj
1− cj

]2

, (3)

Ibbij = −E

[

∂2ℓij
∂bj∂bj

]

= a2j
1− Pj(θi)

Pj(θi)

[

Pj(θi)− cj
1− cj

]2

, (4)

Iccij = −E

[

∂2ℓij
∂cj∂cj

]

=
1− Pj(θi)

Pj(θi)

1

(1− cj)2
, (5)

where Pj(θi) is given by Eq. (2), and ℓij denotes the log-likelihood of observing a response

to item j from examinee i with ability levels θi.
Figure 2 illustrates the information function for a 3PL model item with a set of

reasonable item parameter values: a = 1.5, b = 0, c = 0.2. Fisher information is a measure

of the discriminating power the observed random variables carry to distinguish the true

value from nearby values of an unknown parameter. The higher the information, the more

useful the corresponding ability θ is in estimating the item parameter. As Figure 2 shows,

the peaks of the Fisher information curves typically occur at different θ locations for the
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three parameters (also see Stocking, 1990) of the 3PL model. However, when operational

items are selected in a 3PL CAT, the commonly adopted maximum Fisher information

method essentially leads to a practical result of roughly matching b with θ̂ (Chang and

Ying, 2008). This will provide a good amount of information for b but little information

for either a or c. Thus for such IRT models, a pretest item should instead be assigned

to a group of examinees, so that they will provide enough information in estimating all

item parameters, ideally achieving a balanced maximisation according to certain statistical

criterion. Selecting an inappropriate group of examinees could lead to inefficient or even

seriously inaccurate item parameter estimation.

Figure 2 The information curves for a 3PL model item (a = 1.5, b = 0, c = 0.2) (see online
version for colours)

Note: The curve for the c-parameter is scaled down by 10 times for better

presentation.

3.3 Item-centred adaptive selection methods

In contrast to examinee-centred selection methods, item-centred adaptive selection

methods select pretest items based on criteria directly designed to optimise the estimation

of the pretest item parameters. So far the so-called D-optimal criterion has been the most

frequently adopted in both general optimal calibration design literature (Berger, 1992;

Berger et al., 2000) and in online calibration literature (Chang and Lu, 2010; Jones and Jin,

1994; Zhu, 2006). Using this criterion, different practical procedures have been proposed

for the online calibration setting. The first section below introduces the D-optimal criterion,

and the subsequent sections introduce the existing practical procedures that rely on the

D-optimal criterion and thus belong to the group of item-centred selection methods.

3.3.1 D-optimal criterion

The D-optimal criterion is a traditional criterion in the subject of optimal design (Silvey,

1980). The idea of the D-optimal criterion is minimising the generalised variance

(i.e. volume of the confidence ellipsoid) Anderson (1984) of parameter estimates by
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maximising the determinant of the Fisher information matrix. In the IRT online calibration

context, the D-optimal criterion is the determinant of the Fisher information matrix of the

item-parameter vector given the ability parameter θs of all currently sampled examinees.

Specifically, the information matrix of the item parameter vector (aj , bj , cj) of a 3PL model

item j provided by θi is given by the following equations (Hambleton et al., 1991):

Ij(θi) =





Iaaij Iabij Iacij
Iabij Ibbij Ibcij
Iacij Ibcij Iccij



 . (6)

While Iaaij , Ibbij and Iccij have been given by Eqs. (3)–(5), the other components in the

matrix are given below.

Iabij = −E

[

∂2ℓij
∂aj∂bj

]

= −aj (θi − bj)
1− Pj(θi)

Pj(θi)

[

Pj(θi)− cj
1− cj

]2

, (7)

Iacij = −E

[

∂2ℓij
∂aj∂cj

]

= (θi − bj)
1− Pj(θi)

Pj(θi)

Pj(θi)− cj
(1− cj)2

, (8)

Ibcij = −E

[

∂2ℓij
∂bj∂cj

]

= −aj
1− Pj(θi)

Pj(θi)

Pj(θi)− cj
(1− cj)2

, (9)

where ℓij denotes the log-likelihood of observing a response to item j from examinee i
with ability levels θi, and Pj(θi) denotes the item response function defined in Eq. (2).

The corresponding formulas for the 1PL model and the 2PL model can be reduced from

the formulas above.

As mentioned earlier in this paper, based on the assumption that the responses to an

item from different examinees are independent, the Fisher information matrix of item j
parameters given a vector of θs from N examinees (denoted by I below) is the direct

summation of the Fisher information matrices of item j given each individual θi. Thus the

D-optimal criterion is the determinant of the summed matrix:

Dj = |I| =

∣

∣

∣

∣

∣

N
∑

i=1

Ij(θi)

∣

∣

∣

∣

∣

. (10)

Dj provides a scalar summary of the information for estimating the parameters of item

j. A greater Dj value indicates higher information, which is associated with a smaller

generalised variance of the vector of item parameter estimates, defined as |Cov(β̂)|

(Anderson, 1984), where β̂ denotes the estimated item parameter vector:

argmax
θ

|I| = argmin
θ

1

|I|
= argmin

θ
|I−1|

asy
−−→ argmin

θ
|Cov(β̂)| . (11)

In other words, the higher the D-optimal criterion value is, the smaller the estimation error

for item parameter calibration is. Holding the sample size constant, a higher D-optimal

criterion value should lead to a more efficient calibration.

Note that Eq. (11) holds when I is computed using the true values of examinee ability

θ’s and item parameter vector β. In online calibration, however, true parameter values are
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never available, and a sequential procedure as described in Figure 1 is adopted to gradually

approximate the real optimal design - when computing I , the θ values estimated from

operational items are used in place of the true θ values, and the provisional estimates of

item parameters are used in place of the true item parameter values. Fortunately, Ying and

Wu (1997) have shown that under regularity conditions, this sequential design converges

to the real optimal design as provisional item parameter estimates are updated more data

accumulate. In addition, Chang (2011) further proved that under regularity conditions, the

sequential design is asymptotically consistent and efficient when measurement errors of

θ are present, that is, when estimated θ values are used in place of true θ values. These

findings provide the mathematical foundation for the proposed method. For more details,

readers can also refer to Berger (1991).

3.3.2 Early literature: online calibration as a sampling design

Some early online calibration literature (Chang and Lu, 2010; Jones and Jin, 1994; Zhu,

2006) treated online calibration as a sampling design, where the goal was to identify the

optimal θ points (termed ‘design space’ in optimal design literature) for calibrating each

item. Their designs are different from what is described in Section 2. In their design,

each pretest item is handled separately, and for an item j, each sample point is selected

sequentially where the kth sample (i.e. θk) is selected to maximise a certain measure of

information. For those that used the D-optimal criterion, the quantity to be maximised is

the following:

∣

∣

∣

k−1
∑

i=1

Ij(θi) + Ij(θk)
∣

∣

∣
, (12)

where the first component is the summation of information matrices provided by the k − 1
existing samples item j has obtained and the second component is the information matrix

provided by the possible new design point θk in the design space. Note that based on the

assumption that the responses to an item from different examinees are independent, Fisher

information has the following additive property: the Fisher information matrix of item j
parameters given a vector of θs from N examinees is the direct summation of the Fisher

information matrices of item j given each individual θi.
Deriving from the equation above, a few other computationally simpler designs were

proposed additionally (Berger, 1992; Zhu, 2006). However, these early designs are in fact

hardly feasible in the online calibration scenario. This is because all these designs assume

there is an ‘examinee pool’ filled with examinees at various ability levels; for each pretest

item, the examinees in the examinee pool are compared and the ones whose ability levels

optimise the chosen criterion are selected. However, note that in practice, most CATs are

administered continuously at scattered times. There can rarely be a static examinee pool to

choose examinees from. Therefore, these designs are hardly feasible beyond simulation.

3.3.3 van der Linden and Ren’s (2015) Bayesian D-optimal design

Based on the D-optimal idea, (Linden and Ren, 2015) proposed a procedure that is

practically feasible. Their design follows the flow of continuous administration of an

operational CAT and consequently the online calibration workflow described in Section 2.

Examinees take the test at different times and reach seeding locations successively.
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Whenever an examinee reaches a seeding location, all pretest items are compared and

the item that maximises the so-called Bayesian D-optimal statistic value is selected.

Specifically, the following Bayesian D-optimal statistic is computed for each pretest item j:

∣

∣

∣

kj−1
∑

i=1

Ij(θ̂i) + Ij(θ̂)
∣

∣

∣
−
∣

∣

∣

kj−1
∑

i=1

Ij(θ̂i)
∣

∣

∣
. (13)

where θ̂ denotes the ability estimate of the current examinee who reaches a seeding

location, and θ̂i’s denote the ability estimates of all the kj − 1 examinees who previously

took item j. kj − 1 does not have to be the same for all J pretest items - at a certain time

point, each pretest item may have accumulated a different number of samples.

Among the pretest items, some items tend to render consistently higher D-optimal

statistic values than others, caused by their superior estimated parameter values.

Consequently, this design tends to select those items and ignore others. If a test developer

terminates the calibration phase, some items in the pretest item pool could have very good

parameter estimates but others may have no parameter estimates or extremely unreliable

parameter estimates.

3.3.4 The ordered informative range priority index

To address some of the issues present in the above-mentioned methods, the ordered

informative range priority index (OIRPI) method was developed from a new perspective -

a ‘need-based’ perspective (Zheng, 2014). The OIRPI method selects the pretest item that

‘needs’ the incumbent examinees most.

Specifically, the OIRPI method follows the general workflow described in Section 2:

when an examinee reaches a seeding location, an OIRPI index is computed for each

pretest item in the pretest pool, and the item with the largest OIRPI value is selected

for the incumbent examinee. The OIRPI value quantifies how badly an item needs the

incumbent examinee by how informative this examinee is to this item compared to

potential examinees at other ability levels. For example, if the θ value of the incumbent

examinee is expected to produce higher information for item j than other θ values, item j
has a high demand for this examinee because if it misses this examinee it is not very likely

to receive future examinees who can provide such high information.

The following paragraphs describe the steps of the OIRPI method with the D-optimal

criterion as the indicator of information. But in fact OIRPI is a framework that can be

combined with any other appropriate criterion.

Step 1: The first step of the OIRPI method is to divide the examinee ability scale θ into

several contiguous ranges and determine the representative θ value in each range. One way

to divide the θ scale is equal spacing by the θ value and the representative values are the

middle points of each range. Another way is equal spacing by the percentiles, for example,

if 10 ranges are to be created, let Pt denote the tth percentile, the 10 ranges are P0 ∼ P10,

P10 ∼ P20, · · · , P90 ∼ P100, and the representative values are P5, P15, · · · , P95. These

percentiles can be obtained through empirical distribution of θ values from previous test

data, or an assumed distribution such as normal distribution.

Then, when an examinee reaches a seeding location, Steps 2.1 through 2.3 are carried

out for each item j to obtain their OIRPI values.
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Step 2.1: Calculate Djr given below provided by each θ-range r using their

representative θ values θr.

Djr =
∣

∣

∣

kj−1
∑

i=1

Ij(θ̂i) + Ij(θr)
∣

∣

∣ , (14)

where θ̂i’s are the ability parameter estimates of the kj − 1 samples item j has already

accumulated, and the information matrices are calculated by the provisional item parameter

estimates.

Step 2.2: Scale the information for all θ-ranges by Sjr = (Djr −
min(Djr))/(max(Djr)−min(Djr)).

Step 2.3: Identify which range the estimated ability level of the incumbent examinee

belongs to. Then assign the scaled information value of that range as the priority index of

this item.

Step 3: After the OIRPI value is calculated for all pretest items, the item with the

highest OIRPI value is selected for the incumbent examinee.

4 Simulation study

4.1 Design

A simulation study was conducted under the 1PL, 2PL and 3PL models using a Fortran

program written by the first author to compare five pretest item selection methods:

1 random selection (‘Random’)

2 the examinee-centred method (‘Examinee’)

3 the original D-optimal design (‘D-optima’, as given in Eq. (12))

4 van der Linden and Ren’s (2015) Bayesian D-optimal design (‘B-D-optimal’, as

given in Eq. (13))

5 the OIRPI method (‘OIRPI’).

The third through fifth methods have been described in the previous section. Regarding the

examinee-centred method, because the classical maximum Fisher information method (i.e.

selecting the item that provides the maximum Fisher information for estimating examinee

ability θ) was used as the operational item selection method in this study, the examinee-

centred method used the same method.

The simulation study also included three other factors. The second factor is the method

for estimating the pretest item parameters. This study included two most popular methods:

the one EM cycle method (OEM) (Wainer and Mislevy, 2000) and the multiple EM cycle

method (MEM) (Ban et al., 2001). These algorithms utilise the existing parameter values

of the operational items taken by each examinee and naturally put the calibrated parameter



Compare methods for online calibration 143

values of the pretest items on the existing IRT scale, without the need for the linking

procedures.

Specifically, each time an item is calibrated, the MEM method includes iterations of

the E-steps and the M-steps. The E-step finds the marginal log-likelihood of the item

parameters using the posterior θ distribution from every examinee who took this item. The

M-step finds the item parameter vector (e.g. (a, b, c)) that maximises the posterior marginal

log-likelihood. In the first EM cycle, the posterior ability distribution of each examinee is

obtained from only the administered operational items. In subsequent cycles, the posterior

ability distribution is obtained from both the operational items and the pretest item being

calibrated. The E-step and M-step iterate until the algorithm converges. Here, convergence

is defined as the largest absolute change in all parameters no greater than a small critical

value (0.001 in this study). Note that the MEM method is similar with the fixed parameter

calibration (Kim, 2006). The OEM method is essentially the first EM cycle of the MEM

method, with no subsequent EM cycles.

There are two differences between the estimation methods implemented in this study

and that in Ban et al. (2001). First, Ban et al. (2001) used random item selection and

did not update item parameters sequentially, and therefore they estimated all pretest items

together after all response data were collected; whereas in this study, each pretest item was

estimated individually once it received 10 new responses. Second, (Ban et al., 2001) used

certain fixed Bayesian priors for the item parameters; in this study, to mimic a real situation

where the Bayesian priors of the item parameters may not be known, the parameters for the

Bayesian prior were obtained by fitting the lognormal, normal and beta distributions to the

operational a-, b- and c-parameters, respectively. This solution may be more informative

than using the prior distributions with an arbitrary choice prior parameter values, and less

subject to the self-validating problem in finding ‘empirical priors’ from the items being

calibrated, which are the pretest items.

The third factor is seeding location. Three levels were chosen for seeding location

with test length being 40 items:

a early in the test (items 6 through 10)

b in the middle of the test (items 19 through 23)

c late in the test (items 32 through 36).

For each examinee, five different pretest items were seeded in one of those seeding ranges.

In real practice, a seeding strategy with more randomness may be more acceptable than

this fixed seeding because the latter may lead to differentiated motivation if the seeding

locations are known by examinees. However, the seeding locations were fixed in this

simulation study to better reveal the effect of seeding locations. These three conditions are

expected to generate different results because the θ estimates, which are used in selecting

pretest items, are of different levels of accuracies at different stages of the test. Also note

that regardless of the seeding location, the pretest items are calibrated when an examinee

finishes the entire test, and therefore all response data, including operational items that are

administered after the seeded pretest items, are used in the calibration step.

To better distill patterns at different a-parameter and b-parameter values, the true item

parameters of the pretest items were fixed at a set of discrete values. Specifically, for the

3PL model, a-parameters were set at four levels (0.5, 1.0, 1.5, 2.0), b-parameters were set
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at nine levels (−2.0, −1.5, −1.0, −0.5, 0, 0.5, 1.0, 1.5, 2.0), and c-parameters were set

constant at 0.2. Consequently, 36 pretest items were generated by fully crossing the levels

of the three parameters. Similarly, 36 pretest items were generated in the same way for the

2PL model, with the c parameters set to 0. To keep the conditions consistent across the IRT

models, 36 pretest items were also generated for the 1PL model with the same b-parameters

as the other two models, a-parameters set to 1, and c-parameters set to 0.

The fourth factor is calibration sample size. In this simulation study, item parameter

estimates were recorded at five different time points: when 1000, 1500, 2500, 5000,

7500 examinees have taken the test. No termination rule either based on sample size or

measurement accuracy was imposed in the simulation in order to elicit purer effects of the

factors. In online calibration, all pretest items will accumulate response samples as more

examinees take the test successively, but they may accumulate samples at different rates.

Nevertheless, given that each examinee takes five pretest items and there are a total of 36

pretest items, the chosen conditions correspond to an average of about 140, 200, 350, 700,

1000 calibration samples per pretest item.

Because parameter estimation is highly unstable when the sample size is too small, for

the first 720 examinees, which means on average the first 720× 5/36 = 100 responses

each pretest item receives, pretest items were selected randomly and the item parameters

were not updated until the end of this initial phase. After that, different adaptive pretest item

selection methods were used, and the item parameters of each pretest item were updated

after it obtained every 10 new samples. The pretest item selection criterion values were

always computed using the latest parameter values.

The simulation was replicated for 100 times. In each replication, 300 operational items

were randomly generated from the following distributions. These distributions were chosen

to mimic realistic situations based on the empirical multivariate distributions found in the

calibrated item parameters of a retired item bank as well as suggested by previous studies

(Chang et al, 2001; Linden and Glas, 2000; Wingersky and Lord, 1984).

[

log(a)
b

]

∼ MVN

([

0.4
0.0

]

,

[

0.10 0.15
0.15 1.00

])

, (15)

and

c ∼ Beta(4, 16) , (16)

where the c-parameters are independent from the a- and b-parameters.

In each replication, examinee ability θs were also regenerated from the standard

normal distribution. In the simulation, examinees took the test sequentially. During the

test, operational items were selected from the operational item bank and the examinee’s

ability parameter was updated after each operational item was administered. Maximum

likelihood estimation (MLE) (Baker and Kim, 2004) was the main method used to estimate

θ. In addition, to stabilise the estimates when few data are available and to avoid MLE’s

difficulty with monotone likelihood, expected a-posteriori (EAP) (Baker and Kim, 2004)

was used in place of MLE when the number of administered operational items was no more

than five or when responses were all correct or all incorrect.
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4.2 Evaluation criteria

Simulation results were analysed for each condition crossed by item selection method,

seeding location, calibration sample size, and true a- and b-parameter values. Results were

evaluated through two criteria. The first criterion focuses on the accuracy of the individual

item parameter estimates. Specifically, root mean squared errors (RMSEs) of each item

parameter’s estimates, formulated by Eq. (17), are evaluated.

RMSEp =

√

√

√

√

1

100

100
∑

r=1

1

J

J
∑

j=1

(β̂jrp − βjrp)2 , (17)

where p denotes the specific element in the item parameter vector, such as the a-parameter,

b-parameter and c-parameter; r denotes the replications; j denotes the pretest items with

certain true a- and b-parameter values. For example, for the 2PL or 3PL models, there was

only one pretest item in each replication for any combination of true a- and b-parameter

values; for the 1PL model, there were 4 pretest items sharing the same true b-parameter

value in each replication.

The second criterion focuses on the overall recovery of item parameter vectors.

The chosen criterion is the average weighted area difference between the true item

characteristic curve (ICC) and the estimated ICC. The area difference is computed by

numeric integration using the following formula:

ICCD =
1

100

100
∑

r=1

1

J

J
∑

j=1

Q
∑

q=1

|P̂jr(θq)− Pjr(θq)|g(θq) , (18)

where r denotes the replications, j denotes the pretest items with certain true a- and

b-parameter values, q denotes 601 equally spaced quadrature points from −3 to 3, and the

weighting function g(θq) is the density of the standard normal distribution. This weighting

strategy will reflect the overall effect of the item parameter recovery on the entire normally

distributed population. For the 2PL and 3PL models, ICC area differences will be used as

the single-number summary to compare the performance of pretest item selection methods.

5 Results

The effects of the estimation method, seeding location, and calibration sample size are

analysed first, so that a more focused analysis of the pretest item selection methods can be

rendered afterwards.

5.1 Comparing estimation methods

The RMSEs of the two estimation methods (i.e. OEM and MEM) were investigated for

all combinations crossed by other factors (i.e. true a- and b- parameter values, sample

sizes, seeding locations, and pretest item selection methods). In most conditions, OEM

generated a similar level of accuracy as MEM. The bigger discrepancies are seen in the

RMSEs of the a-parameters for the 2PL and 3PL models. When the true a-parameter was

small (i.e. a = 0.5, 1.0), OEM generated slightly more accurate parameter estimates than
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MEM (RMSEs of OEM being about 0.05 to 0.1 lower than those of MEM). When the true

a-parameter was large (i.e. a = 2.0), this difference is reversed and MEM was more

accurate (RMSEs of MEM being about 0.1 to 0.3 lower than those of OEM).

Additionally, in the conditions of examinee-centred selection for the 2PL and 3PL

models, OEM showed aberrant pattern in the RMSEs of the a-parameter values: for the

pretest items with large true a-parameters (i.e. a = 2.0), the RMSEs of the a-parameters

generated by OEM increase as the sample size increases. A possible explanation of

this aberrant pattern is the lack of information for the a-parameters with the essentially

‘match-b’ process resulted from the examinee-centred selection (Chang and Ying, 2008),

as explained earlier in this paper. In contrast, MEM is less sensitive to this problem and was

able to successfully stabilise the estimation: the RMSEs not only decrease as the sample

size increases but also were significantly smaller than those generated by OEM.

Taking all factors into consideration, for the 1PL model, OEM is preferred because of

the shorter computation time and similar level of accuracy compared to MEM; for the 2PL

and 3PL models, MEM is preferred because of the superior and more stable estimation

results; but if computation time is a concern, OEM is also a viable choice as long as the

pretest items are not selected by the examinee-centred method, and especially not all items

have large true a-parameter values. Based on these findings, the subsequent analysis of the

other factors was made using the results from the MEM estimation.

5.2 Comparing seeding locations

Effects of seeding locations were found in the 1PL model in items with more extreme

b-parameter values (i.e. b = −2.0,−1.5, 1.0, 1.5, 2.0). For those items, as shown in

Figure 31, the estimation accuracies of examinee-centred item selection and the OIRPI

method are generally better in the middle and late seeding locations than in the

early seeding location. This effect of seeding location diminishes for those moderate

b-parameter values. A possible explanation for this phenomenon is when items with more

extreme true b-parameter value are matched with examinees based on highly inaccurate

θ estimates due to the early seeding, the true θ values of those examinees may be very

far away from the informative (i.e. matched by true parameter values) location, so very

little information will actually be collected; while for items with more moderate parameter

values, even if the matched examinees have true θ values that are somewhat away from the

b-parameter value of the items, they will not be as far away as in the previous case, so that

still a decent amount of information can be collected for them even with early seeding.

Effects of seeding locations were not quite visible for other item selection methods for

the 1PL model and most conditions in the 2PL and 3PL models. This may suggest that

overall seeding location does not make much difference in the eventual calibration outcome

in the highly complicated online calibration system, which could provide test developers

with more flexibility in randomly seeding pretest items throughout the entire test so that it

is less predictable by the examinees, resulting in less contaminated calibration data.

5.3 Comparing calibration sample sizes

An obvious and consistent trend has been observed for different calibration sample size

conditions for the 1PL model across most pretest item selection methods, seeding locations,

and true a- and b-parameter values as shown in Figure 3. Calibration accuracy improves

as the sample size increases. The rate of improvement is consistent from the recording

point of 1000 examinees up to 5000 examinees and levels out from 5000 examinees to
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7500 examinees. This means that the improvement in calibration accuracy is only marginal

from an average of about 700 samples per pretest item to an average of about 1000

samples per pretest item in the 1PL model (the sample size conversion was explained in

the Section 4.1).

Figure 3 The RMSE of b-parameter estimates under the 1PL model (see online version for
colours)

Note: red=OIRPI, blue=B-D-optimal, purple=D-optimal, orange=Examinee,

green=Random
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In the 2PL and 3PL models, calibration accuracy for a- and b-parameters generally

improves as the sample size increases but at varied rates, and the effect of sample

size is greater on items with low a-parameters, as shown in Figures 4–7. In contrast,

the calibration accuracy of c-parameters could decrease as the sample size increases,

especially when a-parameters are low (i.e. at the 0.5 level), as shown in Figure 8. At other

a-parameter values, calibration accuracy of c-parameters essentially stays the same. This

is not surprising because calibration difficulty for the c-parameter is well known for the

3PL model (Swaminathan and Gifford, 1979).

5.4 Comparing pretest item selection methods

For the 1PL model, Figure 3 will be used to compare the performance of pretest item

selection methods. For the 2PL and 3PL models, ICC area differences (as given by Eq. 18)

were calculated to evaluate the overall accuracy of all two or three parameters and used as

the single-number summary to compare the performance of pretest item selection methods.

The results in ICC area differences are presented in Figures 9 and 10. Note that because

the seeding locations do not have significant effect for the 2PL and 3PL models, for

presentation simplicity, only the middle seeding location conditions are presented for the

2PL and 3PL models.

The pattern among pretest item selection methods depends on the true b-parameter

values for the 1PL model and the true a-parameter values for the 2PL and 3PL models.

As Figure 3 shows, under the 1PL model, for most conditions with moderate b-parameter

values, the OIRPI method (red lines) and examinee-centred method (orange lines)

generated slightly lower RMSE values than the other two, but the difference is very small.

This trend reverses for the more extreme b-parameter values especially for the early seeding

conditions, where random selection (green lines) and the Bayesian D-optimal method (blue

lines) performed better.

The differences across pretest item selection methods are more obvious in the 2PL and

3PL models as shown in Figures 9 and 10. The studied adaptive item selection methods

were only found slightly more efficient than the random selection method in the 2PL

model for items with larger a-parameter values and smaller absolute b-parameter values.

Alternatively, for items with a = 0.5, across most b-parameter values in the 2PL and 3PL

models, the random selection method and the original D-optimal method generated the

smallest ICC area difference, followed by the OIRPI method, then the Bayesian D-optimal

method and lastly the examinee-centred method.

In summary, the calibration accuracy resulting from various pretest item selection

methods seems to depend on the value of the a- and b-parameters. However, overall, the

simplest random selection seems to be comparable or even more efficient than the other

more complicated adaptive item selection methods. This result might be counterintuitive,

but this finding could indicate that in the sophisticated setting of online calibration, random

selection may have been demonstrated an ideal choice after all.
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Figure 4 The RMSE of a-parameter estimates under the 2PL model with middle seeding location
(see online version for colours)

Note: red=OIRPI, blue=B-D-optimal, purple=D-optimal, orange=Examinee,

green=Random
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Figure 5 The RMSE of b-parameter estimates under the 2PL model with middle seeding location
(see online version for colours)

Note: red=OIRPI, blue=B-D-optimal, purple=D-optimal, orange=Examinee,

green=Random
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Figure 6 The RMSE of a-parameter estimates under the 3PL model with middle seeding location
(see online version for colours)

Note: red=OIRPI, blue=B-D-optimal, purple=D-optimal, orange=Examinee,

green=Random
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Figure 7 The RMSE of b-parameter estimates under the 3PL model with middle seeding location
(see online version for colours)

Note: red=OIRPI, blue=B-D-optimal, purple=D-optimal, orange=Examinee,

green=Random
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Figure 8 The RMSE of c-parameter estimates under the 3PL model with middle seeding location
(see online version for colours)

Note: red=OIRPI, blue=B-D-optimal, purple=D-optimal, orange=Examinee,

green=Random
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Figure 9 The ICC area difference under the 2PL model with middle seeding location (see online
version for colours)

Note: red=OIRPI, blue=B-D-optimal, purple=D-optimal, orange=Examinee,

green=Random
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Figure 10 The ICC area difference under the 3PL model with middle seeding location (see online
version for colours)

Note: red=OIRPI, blue=B-D-optimal, purple=D-optimal, orange=Examinee,

green=Random
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6 Discussion

A strong trend towards the use of technology-enhanced assessments has been seen in recent

years. Many educational and psychological assessments are moving towards computerised

(adaptive) modes, such as the new K-12 state assessments created under the Race To The

Top (RTTT) program,2 the National Assessment of Educational Progress (NAEP),3 and the

patient-reported outcome (PRO) measurements in medical practices (Fayers, 2007; Zheng

et al., 2013). Many of these CAT programs are high stakes and administered over multiple

years, and therefore, this places high demands on item calibration.

Online calibration has been studied for decades to dynamically sample examinees for

calibrating new items more efficiently than the traditional pretesting methods. However,

the existing methods for pretest item selection methods follow distinctive mechanisms

and there has not been comparison among the options. This paper reported the findings

from a simulation study that compared the performance of four available pretest item

selection methods under the 1PL, 2PL and 3PL models and across varied conditions in

terms of estimation methods, seeding locations and calibration sample sizes. It was found

that the calibration accuracy resulting from various pretest item selection methods seems to

depend on the value of the a- and b-parameters. And overall, the simplest random selection

seems to be comparable or even more efficient than the other more complicated adaptive

item selection methods. This finding could indicate that in the sophisticated setting of

online calibration, random selection may have been demonstrated an ideal choice after all.

Moreover, other findings from this study include:

1 MEM was more stable and accurate than OEM, especially for items with large

a-parameter values.

2 no effect of the seeding location was observed.

There are several limitations in the current study. One limitation is that the results and

conclusion from this study are limited within the specific simulation design. For example,

the simulated c-parameters were fixed at 0.2 whereas in reality there may be items with

significantly smaller or larger c-parameter values. Although an effort was made to better

mimic a practical test setting, results under other settings still merit investigations, such

as other test lengths, other operational item selection methods, or add content balancing

and item exposure control, etc. Another limitation is that this simulation has not taken

into consideration the possibility of differentiated performance if examinees identify the

pretest items by the abrupt change in item difficulty compared to the overall adaptive

trend. Real subject experiments may need to be conducted to answer this research question.

Meanwhile, future studies may also be carried out to extend the current methods, such as

adding termination rules or developing new methods for online calibration. With carefully

developed online calibration designs, the item banks will hopefully be replenished or

recalibrated more efficiently with more accurately calibrated items.
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Notes

1 To achieve better visibility, only conditions with b = −2.0,−1.0, 0, 1.0, 2.0 are

included in the figures.

2 See http://www.k12center.org for up-to-date developments.

3 See http://nces.ed.gov/nationsreportcard/about/future_of_naep.aspx.




