Compact Extreme Learning Machines for biological systems
by Kang Li, Jing Deng, Hai-Bo He, Da-Jun Du
International Journal of Computational Biology and Drug Design (IJCBDD), Vol. 3, No. 2, 2010

Abstract: In biological system modelling using data-driven black-box methods, it is essential to effectively and efficiently produce a parsimonious model to represent the system behaviour. The Extreme Learning Machine (ELM) is a recent development in fast learning paradigms. However, the derived model is not necessarily sparse. In this paper, an improved ELM is investigated, aiming to obtain a more compact model without significantly increasing the overall computational complexity. This is achieved by associating each model term to a regularized parameter, thus insignificant ones are automatically unselected, leading to improved model sparsity. Experimental results on biochemical data confirm its effectiveness.

Online publication date: Thu, 16-Sep-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Biology and Drug Design (IJCBDD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com