The role of fluid dynamics in plaque excavation and rupture in the human carotid bifurcation: a computational study
by Scott Lovald, Juan Heinrich, Tariq Khraishi, Howard Yonas, Suguna Pappu
International Journal of Experimental and Computational Biomechanics (IJECB), Vol. 1, No. 1, 2009

Abstract: A 3D computational fluid dynamics model of the human carotid bifurcation has been created to explore plaque excavation and plaque rupture. The model considers different degrees of atherosclerotic stenosis, the form of which is determined using computerised tomography scans of a patient with moderate plaque stenosis. The results suggest that 70% stenosis will diminish blood flow to the brain from 245 ml/min to 71 ml/min. Pressure in the 50% stenosis model is increased by only 3.3%, while pressure in the 70% and 80% stenosis models are increased by 8.8% and 15.4%, respectively. Starting at 30% stenosis, each increase of 10% stenosis increases the peak wall shear stress value by a factor of two. Severely elevated magnitudes in the product of the pressure and the wall shear stress gradient were found on the upstream face of the stenosis. In specific cases, these peaks can be correlated to excavation points observed clinically.

Online publication date: Fri, 30-Jan-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Experimental and Computational Biomechanics (IJECB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com