

International Journal of Information and Computer
Security

ISSN online: 1744-1773 - ISSN print: 1744-1765
https://www.inderscience.com/ijics

On generating new key dependent XOR tables to improve AES
security and evaluating the randomness of the output of block
ciphers

Tran Thi Luong, Hoang Dinh Linh

DOI: 10.1504/IJICS.2023.10055730

Article History:
Received: 12 October 2022
Last revised: 09 March 2023
Accepted: 20 March 2023
Published online: 19 February 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijics
https://dx.doi.org/10.1504/IJICS.2023.10055730
http://www.tcpdf.org

 16 Int. J. Information and Computer Security, Vol. 23, No. 1, 2024

 Copyright © 2024 Inderscience Enterprises Ltd.

On generating new key dependent XOR tables to
improve AES security and evaluating the randomness
of the output of block ciphers

Tran Thi Luong*
Academy of Cryptography Techniques,
No. 141 Chien Thang Road, Tan Trieu, Thanh Tri, Hanoi, Vietnam
Email: luongtranhong@gmail.com
*Corresponding author

Hoang Dinh Linh
Institute of Cryptographic Science and Technology,
No. 105, Nguyen Chi Thanh Road, Lang Ha, Dong Da, Hanoi, Vietnam
Email: hoangdinhlinh@bcy.gov.vn

Abstract: Although block ciphers are widely used and are quite secure, there
are still many types of attacks against components of block ciphers, and the
Advanced Encryption Standard (AES) block cipher is no exception. To
improve the security of AES, there have been many studies in the literature on
methods of making this block cipher dynamic. There have been many works
focused on the methods of making dynamic at the S-box and the MixColumn
transformation of AES. In this paper, we propose a method to make dynamic at
the Addroundkey transformation of AES using new key dependent XOR tables.
We also propose a procedure to evaluate the randomness of the output of a
block cipher and apply this procedure to evaluate the randomness of the
modified AES block cipher using new XOR tables. The proposed dynamic
method based on new XOR tables can help improve the security of the AES
block cipher against many of today’s strong attacks on block ciphers.

Keywords: XOR table; Advanced Encryption Standard; AES; modified AES;
randomness assessment.

Reference to this paper should be made as follows: Luong, T.T. and Linh, H.D.
(2024) ‘On generating new key dependent XOR tables to improve AES
security and evaluating the randomness of the output of block ciphers’,
Int. J. Information and Computer Security, Vol. 23, No. 1, pp.16–39.

Biographical notes: Tran Thi Luong received her Bachelor’s in Mathematics
and Informatics at the Ha Noi University of Sicence in 2006, Master’s in
Cryptographic Technique at Academy of Cryptographic Techniques in 2012,
and PhD in Cryptographic Technique at Academy of Cryptographic
Techniques in 2019. His recent research directions are cryptogaphy, coding
theory and information security.

Hoang Dinh Linh graduated from the Advanced Math Program at the Ha Noi
University of Science in 2014, and Master’s in Applied Mathematics in 2021.
His recent research directions are evaluation of random generators, and testing
for statistical randomness.

 On generating new key dependent XOR tables to improve AES security 17

1 Introduction

In the Advanced Encryption Standard (AES) selection project (Daemen and Rijmen,
2022), there were five finalists, but only Rijndael was the winning algorithm. AES has
been selected as the block cipher standard for the US Government by the National
Institute of Standards and Technology (NIST) released on November 26, 2001 and is
specified in the Federal Information Processing Standard (FIPS 197). The AES algorithm
is a block cipher with substitution – permutation network (SPN) structure (Keliher, 2003;
Li et al., 2011), so it consists of three layers: substitution layer, diffusion layer and key
addition layer.

To improve the security of block ciphers, people find ways to make them dynamic.
To make an SPN block cipher dynamic, you can make one of its components dynamic.
Currently, there are many works in these directions, which can be made dynamic at the
diffusion layer or the substitution layer, or both. For SPN in general and AES in
particular, there are some works in the direction of animating in the diffusion layer such
as Al-Wattar et al. (2015), Ismail et al. (2012), Murtaza et al. (2011) and Shamsabad and
Dehnavi (2020). Some studies in the direction of making dynamic at the S-box such as
Agarwal et al. (2018), Al-Dweik et al. (2022), Assafli and Hashim (2020), Ejaz et al.
(2021), Juremi et al. (2017) and Murphy and Robshaw (2002), and some works
investigated the way of making dynamic at both diffusion and substitution layers as in
Hambouz (2022), Manoj Kumar and Karthigaikumar (2020), Xu et al. (2018) and Yousif
(2019).

For the direction of making the SPN block cipher dynamic at the diffusion layer,
Al-Wattar et al. (2015) proposed a method for animating the AES block cipher using a
dynamic MixColumn transformation. This new MixColumn transformation uses
key-dependent MDS matrices based on key-dependent DNA structures and processes.
The authors analysed the security of the new MixColumn and tested the randomness
through NIST tests. Ismail et al. (2012) proposed a dynamic AES (DRAES) block cipher
using a rotation, the amount of rotating depends on the data and the key in the AES key
scheme. Murtaza et al. (2011) used a dynamic MixColumn transformation for AES. The
new MDS matrices are generated for the MixColumn by scalar multiplication of the rows
of the MixColumn matrix and depend on a secret key. Shamsabad and Dehnavi (2020)
presented a family of n × n binary matrices that satisfy several properties, from which it
is possible to animate cyclic AES-like matrices and some recursive MDS matrices with
less overhead in software.

For the direction of animating the SPN block cipher in the S-box, Agarwal et al.
(2018) proposed an algorithm to generate a key-dependent dynamic S-box using an
irreducible polynomial and an affine constant. The idea is that whenever a bit of the key
is added, the algorithm chooses an irreducible polynomial from the 30 available
irreducible polynomials, an affine constant chosen from all the affine values from 0 to
255, and an XOR value of all the bytes of the key. The S-box’s values depend on these
three parameters. Assafli and Hashim (2020) proposed a dynamic S-box generation
algorithm for the timestamp-dependent AES block cipher. The main strength of the
proposed method is that the ciphertext changes while keeping the constant encryption key
guaranteeing different encryption results for the same data. The authors also studied and
analysed the strength and quality of the new S-box using the avalanche criterion and the
strict avalanche criterion (SAC). Juremi et al. (2017) proposed a method generating AES
dynamic S-boxes using a DeterminantRotation transformation. Each dynamic S-box is

 18 T.T. Luong and H.D. Linh

generated for each round by performing a determinant matrix calculation by rotating the
positions of the AES S-box. The authors tested the randomness and the avalanche
criterion performed on the output to prove the security of the newly proposed algorithm.
Murphy and Robshaw (2002) studied how to perform cryptanalysis with key-dependent
S-boxes. They developed a framework for differential cryptanalysis of key-dependent
S-boxes. Al-Dweik et al. (2022) provided an algorithm schema for generating
key-dependent dynamic S-boxes having the same algebraic properties as those of the
original S-box, including nonlinearity, SAC and bit independence criteria (BIC). Ejaz
et al. (2021) designed a key-dependent dynamic S-box with dynamic permutations to
generate symmetric block ciphers with optimal security. The proposed method of creating
a dynamic S-box was experimentally evaluated through some measures such as BIC,
nonlinearity, hamming distance, balanced output, SAC, and differential and linear
approximation probabilities.

For the direction of animating SPN block ciphers at both substitution and diffusion
layers in a block cipher, Yousif (2019) proposed a dynamic SPN block cipher based on
the Serpent block cipher. The Serpent is one of the candidates for AES block cipher.
Yousif (2019) proposed some dynamic methods for permutations, substitutions, and key
generation based on chaotic mappings for added security. Manoj Kumar and
Karthigaikumar (2020) proposed a key-dependent AES algorithm to secure data over the
internet. This proposed algorithm has a better avalanche effect and SAC when compared
to AES. Hambouz (2022) proposed a lightweight encryption algorithm based on AES
named DLL-AES. DLL-AES animated S-box, ShiftRows, and MixColumn in AES
depending on a master key. Instead of a single S-box, DLL-AES has four small-sized
S-boxes. Xu et al. (2018) proposed an AES-like cipher by replacing AES’s S-box and
MixColumn matrix with key-dependent transformations that retain good cryptographic
properties.

The above works mainly focus on animating methods for MDS matrices and S-boxes.
Recently, Salih et al. (2019, 2020) proposed some dynamic methods for AES based on
XOR tables. Specifically, in Salih et al. (2019), the authors used 3D logistic maps to
create a private XOR table that can be used to replace the original AES XOR table. In
Salih et al. (2020), the authors used Chebyshev polynomial mapping to generate two new
XOR tables used for AES rounds alternatively. Furthermore, in Salih et al. (2020), the
authors also generated a dynamic MDS matrix from this mapping to replace the MDS
matrix in AES’s MixColumn. In Salih et al. (2019, 2020), the authors evaluated the
security of modified AES block cipher by some different criteria such as NIST test,
diehard test, correlation coefficient, ENTROPY and histogram.

It can be seen that the methods proposed in Salih et al. (2019, 2020) are quite new
and interesting, which can increase the security of the AES algorithm. However, by
carefully studying the results of Salih et al. (2019, 2020), we find that there are many
inaccuracies in the proposals of Salih et al. (2019, 2020). In addition, the method of
evaluating the randomness of AES and modified AES used by the authors also has many
unreasonable problems. We will mention more detail on these in Section 2.

For block ciphers in particular and cryptographic primitives in general, the
assessment of randomness is an indispensable requirement in evaluating the security of
those cryptographic primitives. Evaluation of the randomness of block ciphers often uses
statistical tests. Since the approximation and asymptotic approaches used in the

 On generating new key dependent XOR tables to improve AES security 19

distribution functions of statistical tests force the users to use long sequences, a general
approach to solve this problem is concatenating the outputs of block ciphers or hash
functions to form long sequences. In the selection of the AES finalists, NIST used this
method (Soto 1999) that concatenates the output strings of block ciphers to generate long
sequences of length 220 bit and then used the NIST SP 800-22 (Bassham et al., 2010) test
suite to evaluate the randomness. However, the nature of block ciphers requires that the
proposed tests and test parameters focus specifically on ‘sequences of short length’,
which are derived directly from the outputs of these block ciphers. Doğanaksoy et al.
(2010) also used the approach of concatenating the outputs of the block cipher into a long
sequence, then used four tests: the SAC test, linear span test, collision test, and coverage
test to evaluate some properties of the block ciphers.

Sulak (2011) proposed a method to evaluate the randomness of block ciphers and
hash functions by using some non-random input datasets. The corresponding outputs of
the cryptographic primitives will be evaluated for randomness by some statistical tests.

In this paper, we propose a method to create new key-dependent XOR tables to
improve the security of the AES block cipher. We also propose a procedure to evaluate
the randomness of the output of a block cipher and apply this procedure to evaluate the
randomness of AES and the modified AES using these new XOR tables.

The article is organised as follows. In Section 2, we present related works and some
comments on the results in Salih et al. (2019, 2020). Section 3 presents the proposed
algorithm to create new key-dependent XOR tables. Section 4 proposes a procedure for
evaluating the randomness of the output of a block cipher. Section 5 analyses the security
of the modified AES block ciphers. Section 6 is the conclusions.

2 Related works

2.1 Transformations in AES

The round function of AES (Daemen and Rijmen, 2002) consists of four transformations:

• SubByte: Performs byte substitution of the state array using a (S-box) substitution
table.

• ShiftRow: Performs left-rotation of the last three rows of the state array, specifically,
left-rotation 1 byte in row number 2, left-rotation 2 byte in row number 3,
left-rotation 3 byte in row number 4. The first row of the state array is unchanged.

• MixColumn: Multiplies the state array by a 4 × 4 circulant MDS matrix.

• AddRoundKey: Performs an exclusive OR operation between a round key and the
state array. In practice, one will create a pre-stored XOR table (Table 1) for this
transformation.

2.2 Remarks on the results in Salih et al. (2019, 2020)

Through studying the methods proposed in Salih et al. (2019, 2020), we make some
comments as follows:

 20 T.T. Luong and H.D. Linh

1 Remarks on Salih et al. (2019):
• In Salih et al. (2019), the authors showed three properties of the new XOR table,

but these three properties are not enough to ensure the correct decryption
process. After creating the private XOR table, the authors did not specify the
correctness of this XOR table.

• The examples given in Salih et al. (2019) are not accurate compared to the
actual values in the private XOR table suggested by the authors [see examples
and Figure 2 in Salih et al. (2019)].

2 Remarks on Salih et al. (2020):
• In the proposed algorithm of Salih et al. (2020) for creating two dynamic XOR

tables, in step e creating two arrays X, Y but also based on the properties
indicated in Salih et al. (2019), so it is not enough to ensure the decryption is
correct.

• In Salih et al. (2020), the authors used the Z array to generate a key matrix, and
this key matrix is used to perform some permutations on the AES MixColumn
matrix to generate a dynamic MDS matrix. However, this dynamic MDS matrix
is not an MDS matrix because it has at least two singular square submatrices
(see Figure 1).

Figure 1 The dynamic MDS matrix generated by Salih et al. (2020) (see online version
for colours)

In addition to the above comments, it can be seen that Salih et al. (2019, 2020) used 3D
logistic and Chebyshev mappings to generate secret number keys. These methods are not
really effective.

On the other hand, the common point of these two papers is that the evaluation of
proposed block ciphers used several methods such as: NIST test, diehard test, histogram,
correlation coefficient and ENTROPY. However, there are many unreasonable and
inaccurate points in these assessments. Details will be analysed as below:

• The data generation for evaluation in Salih et al. (2019, 2020) is not clear.
Specifically, the authors did not specify how to encrypt 106 bits of plaintext with
128 different keys to obtain 128 ciphertexts of length 106. If only encrypting each
block a time, the length of the ciphertext must be divisible by 128 (since each block
has 128 bit), however 106 is not divisible by 128. Also, when performing
block-by-block encryption will result in the same input blocks will produce the same
output blocks (ciphertexts). Thus, the output data is no longer random. Furthermore,
as recommended in the NIST SP 800-22 standard, the sequence length is 106 and the
number of sequences needed is 1,000. Therefore, the author’s approach is not
reasonable when using only 128 sequences for evaluation.

 On generating new key dependent XOR tables to improve AES security 21

• There is a mistake in presenting the results of the statistical tests of Salih et al.
(2020). Specifically, on page 1578 of Salih et al. (2020), the authors made a
comment that the AES algorithm does not pass the FFT standard. But the result table
[Table 2 in Salih et al. (2020)] showed that AES still passes the FFT standard, the
criteria it fails must be overlapping template.

• According to the NIST SP 800-22 standard, a data file is considered random only
when the success rate is in the range [0.9805607, 0.9994392] (Bassham et al., 2010).
As such, if the pass rate is 1 then the data is not random. Therefore, if the above
requirements are applied, according to Table 2 in Salih et al. (2020), the AES does
not pass the criterion of non-overlapping template, long run, rank, linear complexity;
according to Table 1 in Salih et al. (2020), the algorithm proposed by the authors
does not pass the criterion of FFT, serial 1, linear complexity. However, in these
tables, the authors still marked this criterion as passed. This is not exactly as required
by NIST SP 800-22.

• Besides, in NIST SP 800-22, the non-overlapping template test has 148 p-values,
Random excursions has 8 p-values, random excursions variants has 18 p-values. But
in Salih et al. (2019, 2020), only one p-value is given for each criteria without
specifying how it is the p-value in the case of a specific parameter.

Table 1 The original XOR table in AES

XOR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 Proposed algorithm for creating new key-dependent XOR tables

From the remarks in Section 2.2, we first give the necessary properties of an XOR table
to be satisfied to ensure that the decryption process is performed correctly. Those
properties include:

 22 T.T. Luong and H.D. Linh

• The elements on each column and each row of the XOR table belong to [0, 15] and
are distinct elements.

• The XOR table is symmetric by the main diagonal.

• If a XOR b = c, then b XOR c = a and a XOR c = b, for every element a, b, c in the
XOR table.

Algorithm 1 Creating 02 new XOR tables

Input: a secret key x0 consists of n bit; the original XOR table of AES (Table 1);
Output: two new XOR tables A and B.
Step 1 Use a pseudo-random number generator G with the key seed x0. The output is then a

pseudo-random bit sequence. Take two strings, each consists of 4 bits of the sequence,

starting with the
th

4
n 
  

 and
th

2
n 
  

 bits respectively, and then convert them to decimal,

yielding two numbers in [0, 15], denoted a and b.
Step 2
 • Add all the cells of the original AES XOR table (Table 1) with the number a, then

divide the results modulo by 16, to get a new XOR table, denoted A1.
 • Add all cells of the original AES XOR table (Table 1) with the number b, then

divide the results modulo by 16, to get a new XOR table, denoted B1.
Step 3
 • Shift the positions of rows and columns in two tables A1 and B1 so that the first

row and column in these two tables is an ascending sequence from 0 to 15. Then,
two new XOR tables are obtained, respectively A and B.

In the following, Algorithm 1 is proposed to generate new XOR tables depending on a
given secret key.

We should choose the pseudo-random number generator G in Algorithm 1 as a
cryptographically secure pseudo-random number generator (Bassham et al., 2010;
Saarinen, 2022).

Remark 1: This remark is about the correctness of the new XOR tables. The original AES
XOR table satisfies the necessary properties of an XOR table. Algorithm 1 simply adds
all the cells of that original XOR table with a number of [0, 15] and then modulo by 16.
Thus, the new XOR table can preserve the required properties of an XOR table. We also
conduct an experimental check that the new XOR tables satisfy all the three required
properties of an XOR table.

Remark 2: The numbers a, b in Algorithm 1 belong to [0, 15], so there are all 16 possible
dynamic XOR tables according to this algorithm.

3.1 Application of new XOR tables to improve AES block cipher

Executing Algorithm 1 yields two new key-dependent XOR tables, denoted A and B.
XOR table A will be used for odd rounds, and XOR table B will be used for even rounds
of AES.

 On generating new key dependent XOR tables to improve AES security 23

Table 2 XOR table A1

XOR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
2 2 1 4 3 6 5 8 7 10 9 12 11 14 13 0 15
3 3 4 1 2 7 8 5 6 11 12 9 10 15 0 13 14
4 4 3 2 1 8 7 6 5 12 11 10 9 0 15 14 13
5 5 6 7 8 1 2 3 4 13 14 15 0 9 10 11 12
6 6 5 8 7 2 1 4 3 14 13 0 15 10 9 12 11
7 7 8 5 6 3 4 1 2 15 0 13 14 11 12 9 10
8 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9
9 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8
10 10 9 12 11 14 13 0 15 2 1 4 3 6 5 8 7
11 11 12 9 10 15 0 13 14 3 4 1 2 7 8 5 6
12 12 11 10 9 0 15 14 13 4 3 2 1 8 7 6 5
13 13 14 15 0 9 10 11 12 5 6 7 9 1 2 3 4
14 14 13 0 15 10 9 12 11 6 5 8 7 2 1 4 3
15 15 0 13 14 11 12 9 10 7 8 5 6 3 4 1 2
0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table 3 XOR table B1

XOR 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

To apply Algorithm 1 to improve the security of the AES block cipher, we find a true
random key derived from a true random number generator source (https://www.random.
org/bytes/). This key is used as the input to Algorithm 1. Executing Algorithm 1 with this
key as input, two values are obtained:

 24 T.T. Luong and H.D. Linh

1a =

8b =

From this, two new XOR tables A1 and B1 are obtained as shown in Table 2 and Table 3.
Table 4 XOR table A for odd rounds

XOR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 15 2 1 4 3 6 5 8 7 10 9 12 11 14 13 0
3 14 3 4 1 2 7 8 5 6 11 12 9 10 15 0 13
4 13 4 3 2 1 8 7 6 5 12 11 10 9 0 15 14
5 12 5 6 7 8 1 2 3 4 13 14 15 0 9 10 11
6 11 6 5 8 7 2 1 4 3 14 13 0 15 10 9 12
7 10 7 8 5 6 3 4 1 2 15 0 13 14 11 12 9
8 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10
9 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
10 7 10 9 12 11 14 13 0 15 2 1 4 3 6 5 8
11 6 11 12 9 10 15 0 13 14 3 4 1 2 7 8 5
12 5 12 11 10 9 0 15 14 13 4 3 2 1 8 7 6
13 4 13 14 15 0 9 10 11 12 5 6 7 9 1 2 3
14 3 14 13 0 15 10 9 12 11 6 5 8 7 2 1 4
15 2 15 0 13 14 11 12 9 10 7 8 5 6 3 4 1

Table 5 XOR table B for even rounds

XOR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
1 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
2 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
3 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
4 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
5 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
6 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
7 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
9 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
10 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
11 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
12 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
13 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
14 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
15 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

 On generating new key dependent XOR tables to improve AES security 25

Next, shift the positions of rows and columns in two tables A1 and B1 so that the first row
and column in these two tables is an ascending sequence from 0 to 15, yielding two new
XOR tables, denoted A and B, as shown in Table 4 and Table 5.

Then, we use the XOR table A for the odd rounds, the XOR table B for the even
rounds of AES to perform encryption and decryption.

4 Proposing a procedure to evaluate the randomness of the output of block
ciphers

In this section, we propose an efficient procedure as shown in Figure 2 to evaluate the
output randomness for a block cipher. Our process does not need to concatenate the
outputs of the block cipher into a long sequence through a mode of operation, but can
efficiently evaluate the randomness of the block cipher by statistical tests for sequences
of short length. Specifically, our process is as follows:

Step 1 Generate a non-random dataset as input for the block cipher as detailed below.
Here, we consider four types of input datasets: low weight (LW) plaintext
datasets, high weight (HW) plaintext datasets, 1-bit plaintext avalanche datasets,
and plaintext rotation datasets.

Step 2 For each round-reduced version of the block cipher, compute the output dataset
corresponding to the input dataset generated in Step 1 and the arbitrary key (we
can consider the worst case as non-random key). For example, if the input
dataset is LW128, then we need to compute ten output datasets corresponding to
the modified block cipher versions with round number from 1 to 10. Each output
dataset consists of 349,632 corresponding to 349,632 output sequences of
128-bit input sequences in the LW128 input dataset.

Step 3 For each output dataset, use the NIST two-level test approach with some
correction for statistical tests for short sequences to calculate the corresponding
p-values for each sequence in the output dataset.

Step 4 Summarise the results and conclusions. A block cipher version with round
number r is considered to be random if all the corresponding output datasets
pass all the below statistical tests.

Note: The number of rounds r here corresponds to the number of rounds of the block
cipher.

4.1 Non-random input plaintext datasets

We use special types as follows:

1 LW plaintext: A LW plaintext dataset is made by LW binary sequences. The
plaintext length corresponds to the proposed block cipher algorithms with different
block size versions. In the 128-bit case, the dataset consists of 128-bit binary
sequences whose weight does not exceed 3. Specifically, the number of plaintexts
with length of m bits and each plaintext with Hamming weight less than or equal to

 26 T.T. Luong and H.D. Linh

k, denoted by ,k
nN is calculated as

1
.

kk
n i

n
N

i=

 
=  

 
 Then, the number of plaintexts

for different lengths is 349,632 for 128-bit block length.

2 HW plaintext: A HW plaintext dataset is formed by selecting HW plaintexts and they
are formed similar to the case of LW plaintext. In other words, the high density
inputs are the bitwise complement of the low density inputs.

3 1-bit plaintext avalanche: In order to form 1-bit plaintext avalanche (Av1) dataset,
firstly a random plaintext R of length m is chosen. Then, each time by flipping
another bit of R, a set of m plaintexts is formed and the corresponding ciphertexts are
obtained. The same procedure is applied to k different plaintexts to get a set of mk
sequences. The values of k for 128-bit input are 1,048,576.

4 Plaintext rotation: A random plaintext R of length m is chosen to form plaintext
rotation (Rot) dataset, and a set of m plaintexts is formed by consecutive 1-bit
rotations of R and the corresponding ciphertexts are obtained. The same procedure is
applied to k different plaintexts to get a set of mk sequences.

Figure 2 Procedure of randomness evaluation for block ciphers

Input data sets
(non-random)

Block cipher
 r rounds

Coresponding output
data sets

Two-levels Test

Conclude Random

Pass all tests

Set of p-values
coresponding to
statistical tests

Fail for only
one test

Conclude Non-
Random

 On generating new key dependent XOR tables to improve AES security 27

4.2 Two-level test

In Step 3, we use two-level test approach in the NIST SP 800-22 test suite (Bassham
et al., 2010): Level 1 is checking the proportion of sequences with p-values greater than a
threshold; the second is checking the distribution of the p-values.

For Level 1, we count the number of sequences in the sample that have P-value ≥ α
and are denoted by mp. Then, under the assumption of randomness, mp follows the
binomial distribution (, 1)m − α that is approximate to the normal distribution

((1), (1))m m− − α α α when n is large enough, where m is the number of test
sequences. Therefore, the percentage of sequences that pass a test (= mp / m) is

approximate to (1)(1), .
m
− − 

 


α αα The acceptable interval of mp / m is determined

using the following level of significance (with α = 0.01):

(1) (1)1 3 1 3 .pm
m m m
− −− − < < − +α α α αα α

If the pass rate is outside the range above, there is evidence that the data is not random.
For Level 2, we have a set of p-values corresponding to the output dataset for each

statistical test. Then, apply the good of fitness test to check if the p-values have a
theoretically consistent distribution on the [0, 1] segment, by dividing the [0, 1] segment
into ten subintervals [0.0, 0.1], (0.1, 0.2], …, (0.9, 1.0]. Let m be the number of
test sequences, and the number of sequences with p-values in the ith interval for
i = 1, 2, ···, 10. Then, the statistic X follows a χ2 distribution with nine degrees of
freedom and the p-value of Level 2 is calculated as follows:

()210

1

i i

ii

F m p
X

m p=

− ⋅
=

⋅

29- ,
2 2

χigamc =  
 

p value

where igamc is an incomplete gamma function. The values pi, 1 ≤ i ≤ 10 have been
determined in detail in the below.

If p-value ≥ 0.0001 then the test result is considered to pass, i.e., the distribution of
the p-values is not far from the theoretical values.

In this paper, we just consider 128-bit sequences for AES-128 and the modified
AES-128. The exact distributions for six NIST statistics are in Table 6.

In five basic test in Menezes et al. (2018), autocorrelation test checks for correlations
between the sequence s and (non-cyclic) shifted versions of it. Let d be a fixed integer,
1 ≤ d ≤ n / 2. The number of bits in s not equal to their d-shifts is

1

0
() ,

n d
i i di

A d s s
− −

+=
= ⊕ where ⊕ denotes the XOR operator.

The statistic used is

2 ()
2

n dA d
X

n d

− − 
 =

−

 28 T.T. Luong and H.D. Linh

which approximately follows an (0, 1) distribution if n – d ≥ 10.

Table 6 Theoretical distributions of test results for 128-bit sequence

Sub-interval Frequency
test Runs test

Test for
longest run

of ones
Serial test Approximate

entropy test
CuSum

test

[0.0, 0.1] 0.092690 0.100679 0.095011 0.101931 0.105734 0.083277
(0.1, 0.2] 0.091993 0.101395 0.104278 0.095514 0.095735 0.102103
(0.2, 0.3] 0.146253 0.113361 0.101632 0.101915 0.092841 0.079860
(0.3, 0.4] 0.095504 0.102226 0.106461 0.112556 0.110089 0.104008
(0.4, 0.5] 0.109829 0.095862 0.102993 0.082076 0.091082 0.130600
(0.5, 0.6] 0.122433 0.104063 0.120047 0.108904 0.119882 0.078669
(0.6, 0.7] 0.000000 0.071873 0.077501 0.089985 0.077519 0.076607
(0.7, 0.8] 0.132306 0.110294 0.109233 0.119499 0.119499 0.086252
(0.8, 0.9] 0.138606 0.114290 0.089208 0.084588 0.084588 0.153731
(0.9, 1.0] 0.070386 0.085956 0.093636 0.103031 0.103031 0.104892

Source: Menezes et al. (2018)

In this paper, we compute exact distributions for autocorrelation test with d = 1
(correlation in bits) and d = 8 (correlation in bytes).

For d = 1, note that the p-value of an array depends only on the value of Sn–1. For a
given value Sn–1 = k, there are exactly 12 k

nC − n-bit sequences.
First, we have the following lemma.

Lemma 1: Equation x1 + x2 + ··· + xa = b, xi ∈ {0, 1}, 1 ≤ i ≤ a with integers a ≥ b ≥ 0
have exactly b

aC solutions.

Proof: It is easy to see that for b = 0, the equation has a unique solution,
0

1 21 , 0.a aC x x x= = = = =
For any b ≤ a, the number of solutions to the equation is the number of ways to

choose b values out of a and assign them equal to 1. Therefore, the number of solutions
to the equation is .b

aC ■

Now, we have the following proposition.

Proposition 1: In the space of n-bit sequences s0s1 ··· sn–1, si ∈ {0, 1}, 0 ≤ i ≤ n – 1, there

are exactly 12 k
nC − sequences satisfying

2
1 10

.
n

n i ii
S s s k

−
− +=

= ⊕ =

Proof: Let δj = sj ⊕ sj+1, 0 ≤ j ≤ n – 2 then δj ∈ {0, 1}. Apply Lemma 1, the equation
2

1 0

n
n ji

S δ k
−

− =
= = have 1

k
nC − solutions. For a set of solutions (δ0, δ1, ···, δn–2), there are

exactly two satisfying sequences s0 ··· sn–1 because for each value δi, 0 ≤ i ≤ n – 2 there is
(si, si+1) satisfying 1 .i i is s δ+⊕ = Thus, there is a total 12 k

nC − of sequences that satisfy
2

1 10
.

n
n i i ii

S s s δ
−

− +=
= ⊕ = ■

 On generating new key dependent XOR tables to improve AES security 29

Then, the probability () 1
1

2 .
2

k
n

n n

CPr S k −
− = =

The pseudocode of the probability interval computing algorithm is presented in
Algorithm 2.
Algorithm 2 Computation probability intervals for autocorrelation test in bit (d = 1)

Prop_BitAutoCorr(n){
 Initialise array of probability values: Pr[10] = {0, ···, 0}.
 for S ← 0 to n – 1 do {
 Compute p-value via S, n
 if p-value in j interval then {
 Pr[j] = Pr[j] + Pr[Sn–1 = S]
 }
 }
}

Table 7 shows the theoretical distributions of BitAutoCorr test results for individual
sequences.
Table 7 Theoretical distributions of BitAutoCorr test results for individual sequences

Sub-interval
Autocorrelation test (d = 1)

128 160 256 512
[0.0, 0.1] 0.1098495026 0.1124301194 0.1032997668 0.0926615712
(0.1, 0.2] 0.1041156515 0.0919094698 0.1070224747 0.1227748137
(0.2, 0.3] 0.0729494532 0.0624856743 0.1060414054 0.0729268419
(0.3, 0.4] 0.0880424435 0.1610145475 0.0643152170 0.0879465019
(0.4, 0.5] 0.1029648915 0.0980846952 0.1505713250 0.1027967555
(0.5, 0.6] 0.1166935437 0.1084094000 0.0852223753 0.1164603740
(0.6, 0.7] 0.1281715972 0.1168568857 0.0907205931 0.1278855543
(0.7, 0.8] 0.1364407325 0.0000000000 0.0950751815 0.0672612360
(0.8, 0.9] 0.0000000000 0.1228495465 0.0980934413 0.1387970805
(0.9, 1.0] 0.1407721843 0.1259596616 0.0996382199 0.0704892710

For d = 8, applying the same argument in the proof of Proposition 1, we have the
following proposition.

Proposition 2: In the space of n-bit sequences s0s1 ··· sn–1, si ∈ {0, 1}, 0 ≤ i ≤ n – 1, there

are exactly 2d k
n dC − sequences satisfying

1

0
.

n d
n d i i di

S s s k
− −

− +=
= ⊕ = Then, we have

() .
2

k
n d

n d n d

C
Pr S k −

− −
= =

For d = 8, we have:

 30 T.T. Luong and H.D. Linh

() 8
8 8

.
2

k
n

n n

CPr S k −
− −

= =

The pseudocode of the probability interval computing algorithm is given in Algorithm 3
as follows.
Algorithm 3 Computation probability intervals for autocorrelation test in byte (d = 8)

Prop_ByteAutoCorr(n){
 Initialise array of probability values: Pr[10] = {0, ···, 0}.
 for S ← 0 to n – 1 do {
 Compute p-value via S, n
 if p-value in j interval then {
 Pr[j] = Pr[j] + Pr[Sn–8 = S]
 }
 }
}

Table 8 shows the theoretical distributions of ByteAutoCorr test results for individual
sequences.
Table 8 Theoretical distributions of ByteAutoCorr test results for individual sequences

Sub interval
Autocorrelation test (d = 8)

128 160 256 512
[0.0, 0.1] 0.0824074794 0.0881746480 0.1122155681 0.0992339139
(0.1, 0.2] 0.0882377338 0.1354384538 0.0700378602 0.0971560850
(0.2, 0.3] 0.1446580877 0.0680413496 0.0980850582 0.1092047340
(0.3, 0.4] 0.0961199194 0.0806776002 0.1287998752 0.0917978299
(0.4, 0.5] 0.1115677636 0.0931769467 0.0758017644 0.1066825418
(0.5, 0.6] 0.1252690679 0.1048240651 0.0828086502 0.1201174264
(0.6, 0.7] 0.0000000000 0.1148756877 0.0890192990 0.0643483118
(0.7, 0.8] 0.1360681255 0.1226375585 0.1921977440 0.1352417030
(0.8, 0.9] 0.1429868438 0.1275430609 0.1004195089 0.0699293336
(0.9, 1.0] 0.0726849789 0.0646106295 0.0506146718 0.1062881206

5 Security analysis of modified AES algorithm

5.1 Security analysis

Currently, there are many types of attacks on SPN block ciphers, of which the two most
strong attacks are linear attacks and differential attacks. The linear attack is a kind of
attack introduced by Matsui (1994). The linear attack (Heys and Tavares, 1996; Matsui,
1994) is a known plaintext attack that requires the collection of a large number of
plaintext and ciphertext pairs corresponding to an unknown key to be searched. The
differential attack (Lai et al., 1991; Matsui, 1994) is a form of selected plaintext attack

 On generating new key dependent XOR tables to improve AES security 31

that requires the collection of a large number of ciphertexts generated by pre-selected
plaintexts.

For linear attacks, the strongest known version of the attack is Matsui’s (1994)
Algorithm 2. The data complexity (number of plaintext/ciphertext pairs) of Matsui’s
Algorithm 2 against linear attack is given by the following formula (Keliher, 2003):

[1] (,)L T

cN
ELP a b

=


 (1)

The data complexity (number of plaintext/ciphertext pairs) against differential attack is
(Keliher, 2003):

[1]
1
(Δ , Δ)D T

N
EDP X Y

=


 (2)

where ELP[1…T](a, b) is the average linear probability over 1…T rounds with input and
output mask are a and b, respectively. Similarly, EDP[1…T](∆X, ∆Y) is the probability of
the average differential probability over 1…T rounds with input and output differences
are ∆X and ∆Y, respectively (see more in Keliher, 2003).

Thus, to successfully perform these two types of linear and differential attacks, one
must collect an enormous number of plaintext/ciphertext pairs. For example, with the
DES algorithm, if a cryptanalyst expects successfully perform the linear attack, he must
collect about 247 plaintext/ciphertext pairs (Matsui, 1994). This number is a large one.

However, there is a crucial point to note here, to perform these two types of attacks,
the cryptanalyst must know each component in the structure of the block cipher. For
example, with the AES algorithm, cryptanalysts need to know the exact S-box,
MixColumn matrix, ShiftRow operation, and XOR operation used in AES before they
can attack AES by linear or differential ones. But when we animate any component of
AES, it means that the cryptanalyst does not know exactly what that component is. So
they meet more difficulties finding the exact part made dynamic in AES and then proceed
with the regular cryptanalysis.

Thus, if a cryptanalyst wants to perform a linear or differential attack on a dynamic
block cipher, they must perform the following steps:

Step 1 Try (by exhausting) the animated component in the block cipher. Assuming the
candidate for this component is Xi (corresponding to the ith attempt).

Step 2 Carry out linear/differential attacks with a dynamic block cipher associated with
a dynamic component Xi (in Step 1). The cryptanalyst then needs to collect T
plaintext/ciphertext pairs. Then perform the cryptanalysis steps as usual.

Step 3 If the cryptanalysis in Step 2 is unsuccessful, return to Step 1.

The above three-step process ends when the cryptanalyst successfully executes for
cryptanalysis the block cipher with a candidate of the dynamic component.

Thus clearly, in terms of data complexity, instead of T plaintext/ciphertext pairs, the
cryptanalyst would have to collect nT plaintext/ciphertext pairs (with n attempts). In
terms of time complexity, it also increases accordingly. Therefore, we can assert that
animating block ciphers will greatly increase security of block ciphers.

In this paper, for the modified AES algorithm, instead of using an XOR table like
AES’s, we use two new XOR tables (A and B), which are used alternately in AES rounds.

 32 T.T. Luong and H.D. Linh

The new XOR tables are generated from a given secret key and the original AES XOR
table. The modified AES block cipher (also known as key-dependent DRAES block
cipher) will be much more difficult than AES for cryptanalysis. In practice, the algorithm
generating new XOR tables (Algorithm 1) can be public but the cryptanalysts do not
know the secret key. Therefore, they can not know which XOR table used for AES.
Furthermore, the alternatively use of new XOR tables for AES rounds also makes it much
more difficult for cryptanalysts because they do not know which XOR table used for
which round of AES.

Another aspect is that the number of dynamic XOR tables generated by Algorithm 1
is 16, which is not too large, but in practice it will make it much more difficult for
cryptanalysts to collect many pairs of plaintexts and ciphertexts. Generally, if the
cryptanalysts do the exploration by the exhaustive method, it is very difficult for them to
do. Thus, it can be seen that the modified AES block cipher with new key-dependent
XOR tables can improve the security of the AES block cipher.

Compare our method with methods in Salih et al. (2019, 2020).
Since our method is to generate dynamic XOR tables to animate the AES block

cipher at the Addroundkey layer, so in this paper we only compare our method with those
proposed in Salih et al. (2019, 2020). Other research directions focus on animating AES
at the substitution and diffusion layers, so we will not compare them with our method in
this paper.
Table 9 Compare our method with methods in Salih et al. (2019, 2020)

Criteria Our method Methods in Salih et al. (2019, 2020)
Dynamic by key Yes Yes
Number of new XOR
tables created

2 1

Dynamic XOR table space 16 1
Random bit generation
algorithm

Pseudo-random bit
generator (more efficient)

Chaotic mapping

Necessary properties for
the XOR table

Fully indicated Incompletely indicated

Security of modified AES
algorithm

More secure because
dynamic XOR tablespace

is larger

The dynamic MDS matrix in Salih
et al. (2019) is not an MDS matrix,
the number of XOR tables is small,
which may affect the security of the

modified AES algorithm

5.2 Evaluation of randomness via NIST two-level approach

We have applied our procedure to evaluate the randomness of outputs of AES and the
modified block cipher. The obtained results show that the modified block cipher achieve
the output randomness equivalent to AES block cipher. Figure 3 shows the successful
proportion of statistical tests by round for AES and the modified AES. Table 10 shows
randomness assessment results for original AES.

 On generating new key dependent XOR tables to improve AES security 33

Experimental results show that the original AES block cipher needs three rounds to
achieve randomness for datasets AV1, HW, LW and two rounds to achieve randomness
for dataset Rot. In summary, the AES block cipher requires three rounds to achieve
randomness for the datasets considered in this paper. Table 11 presents the randomness
assessment results for the modified AES.

Figure 3 The successful proportion of statistical tests by round for AES and the modified AES
(see online version for colours)

98.6
98.7
98.8
98.9

99
99.1
99.2
99.3
99.4

1 2 3 4 5 6 7 8 9 10

SU
CC

ES
SF

UL
 P

RO
PO

RT
IO

N

NUMBER OF ROUNDS

Successful proportion by round for
original AES with AV1 data

98.6
98.7
98.8
98.9

99
99.1
99.2
99.3
99.4

1 2 3 4 5 6 7 8 9 10

SU
CC

ES
SF

UL
 P

RO
PO

RT
IO

N

NUMBER OF ROUNDS

Successful proportion by round for
modified AES with AV1 data

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

SU
CC

ES
SF

UL
 P

RO
PO

RT
IO

N

NUMBER OF ROUNDS

Successful proportion by round for
original AES with HW data

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

SU
CC

ES
SF

UL
 P

RO
PO

RT
IO

N

NUMBER OF ROUNDS

Successful proportion by round for
modified AES with HW data

0
20
40
60
80

100
120

1 2 3 4 5 6 7 8 9 10

SU
CC

ES
SF

U
L

PR
O

PO
RT

IO
N

NUMBER OF ROUNDS

Successful proportion by round for
original AES with LW data

0
20
40
60
80

100
120

1 2 3 4 5 6 7 8 9 10SU
CC

ES
SF

U
L

PR
O

PO
RT

IO
N

NUMBER OF ROUNDS

Successful proportion by round for
modified AES with LW data

 34 T.T. Luong and H.D. Linh

Figure 3 The successful proportion of statistical tests by round for AES and the modified AES
(continued) (see online version for colours)

98.7

98.8

98.9

99

99.1

99.2

99.3

1 2 3 4 5 6 7 8 9 10

SU
CC

ES
SF

UL
 P

RO
PO

RT
IO

N

NUMBER OF ROUNDS

Successful proportion by round for
original AES with Rot data

98.7

98.8

98.9

99

99.1

99.2

99.3

1 2 3 4 5 6 7 8 9 10

SU
CC

ES
SF

UL
 P

RO
PO

RT
IO

N

NUMBER OF ROUNDS

Successful proportion by round for
original AES with Rot data

Table 10 Randomness assessment results for original AES

No. of
rounds Freq. test Runs test

Test for
longest
run of
ones

Serial
test

AppEn.
test

CuSum.
test

Bit
AutoCorr.

test

Byte
AutoCorr.

test

AV1 input data
1 0 0 0 0 0 0 0 0
2 0 0 0.097352 0.018387 0.001756 0 0 0.000240
3 0.674352 0.718134 0.543234 0.854342 0.938274 0.079594 0.833264 0.819625
4 0.837992 0.780179 0.677498 0.520289 0.861955 0.660107 0.225586 0.515942
5 0.311486 0.477947 0.361286 0.176993 0.831995 0.972854 0.685608 0.241037
6 0.161481 0.277486 0.620682 0.444318 0.690645 0.067994 0.358080 0.987605
7 0.691699 0.182190 0.878501 0.859037 0.749850 0.545242 0.142185 0.963018
8 0.463798 0.573471 0.645756 0.833488 0.847496 0.814524 0.850207 0.751446
9 0.554941 0.494566 0.595929 0.468640 0.519504 0.238870 0.294216 0.719405
10 0.637994 0.085964 0.919557 0.073139 0.217203 0.664697 0.216509 0.246476

HW input data
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0.092147 0.376637 0.483114 0.468203 0.508598 0.047413 0.248938 0.650548
4 0.187437 0.331880 0.430121 0.433326 0.371806 0.188852 0.399271 0.037653
5 0.729675 0.688300 0.680246 0.513069 0.663646 0.073020 0.172822 0.943102
6 0.909228 0.321444 0.081417 0.609881 0.810902 0.994181 0.417283 0.956882
7 0.387684 0.458585 0.281717 0.064036 0.095100 0.990907 0.039058 0.120226
8 0.429938 0.909851 0.535240 0.673103 0.283729 0.061184 0.599375 0.283946
9 0.363365 0.130117 0.296703 0.219469 0.061937 0.354226 0.385171 0.825214
10 0.703550 0.510023 0.195757 0.258551 0.052523 0.090337 0.691955 0.793155

 On generating new key dependent XOR tables to improve AES security 35

Table 10 Randomness assessment results for original AES (continued)

No. of
rounds Freq. test Runs test

Test for
longest
run of
ones

Serial
test

AppEn.
test

CuSum.
test

Bit
AutoCorr.

test

Byte
AutoCorr.

test

LW input data
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0.283404 0.499057 0.062722 0.662772 0.710793 0.409956 0.285987 0.977911
4 0.602345 0.242995 0.059947 0.622687 0.575576 0.338580 0.305306 0.066553
5 0.227775 0.993694 0.618060 0.911933 0.911703 0.788742 0.782909 0.673211
6 0.264241 0.521711 0.018088 0.000463 0.110097 0.023398 0.616281 0.860850
7 0.291630 0.714159 0.039952 0.467268 0.351942 0.677446 0.796704 0.215079
8 0.188269 0.399319 0.115799 0.908694 0.976455 0.078170 0.033836 0.062437
9 0.980581 0.002436 0.281112 0.310044 0.144750 0.916318 0.551379 0.637450
10 0.228045 0.364696 0.543255 0.033877 0.030543 0.420899 0.847672 0.097713

Rot input data
1 0 0.377923 0.000022 0 0 0 0.123395 0.725779
2 0.200353 0.746394 0.584519 0.096069 0.086802 0.719978 0.740125 0.521973
3 0.731760 0.761428 0.239517 0.661889 0.628289 0.364076 0.782763 0.664107
4 0.174402 0.957485 0.632356 0.361589 0.087942 0.923035 0.561526 0.772368
5 0.217767 0.846416 0.440244 0.647179 0.861486 0.222809 0.540009 0.962706
6 0.948885 0.319307 0.717474 0.178828 0.150365 0.268130 0.739672 0.845436
7 0.733056 0.515920 0.243853 0.504955 0.266844 0.546180 0.573704 0.409911
8 0.724931 0.382191 0.917489 0.030084 0.582831 0.761451 0.741164 0.335243
9 0.803725 0.069296 0.265447 0.267188 0.267692 0.900419 0.064927 0.552041
10 0.773706 0.108572 0.186316 0.899298 0.888591 0.070233 0.958691 0.158013

Table 11 Randomness assessment results for the modified AES

No. of
rounds Freq. test Runs test

Test for
longest
run of
ones

Serial
test

AppEn.
test

CuSum.
test

Bit
AutoCorr.

test

Byte
Autocor.

test

AV1 input data
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0.000022 0
3 0.598894 0.018305 0.339122 0.114644 0.017900 0.401902 0.068564 0.783297
4 0.543253 0.601551 0.597370 0.474953 0.471361 0.511647 0.962485 0.907979
5 0.704804 0.098806 0.752760 0.019669 0.009143 0.770070 0.349626 0.745146
6 0.590701 0.129585 0.685053 0.286265 0.313612 0.489214 0.106276 0.727202
7 0.936945 0.023026 0.582644 0.416645 0.402667 0.176081 0.005053 0.302354
8 0.128106 0.413249 0.187094 0.450533 0.667270 0.617485 0.098959 0.065653
9 0.752848 0.202312 0.891466 0.449087 0.144161 0.583684 0.141038 0.861803
10 0.528404 0.357128 0.749070 0.221138 0.430105 0.752828 0.624921 0.712713

 36 T.T. Luong and H.D. Linh

Table 11 Randomness assessment results for the modified AES (continued)

No. of
rounds Freq. test Runs test

Test for
longest
run of
ones

Serial
test

AppEn.
test

CuSum.
test

Bit
AutoCorr.

test

Byte
Autocor.

test

HW input data
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0.174302 0.610036 0.605127 0.056554 0.048234 0.293482 0.270106 0.802985
4 0.494330 0.879917 0.057344 0.520374 0.848626 0.588860 0.960304 0.760260
5 0.233626 0.378885 0.837758 0.637098 0.344653 0.392646 0.048854 0.008479
6 0.013096 0.003210 0.186732 0.106056 0.077918 0.018103 0.069971 0.083227
7 0.150654 0.605880 0.316956 0.253551 0.158879 0.568887 0.281234 0.406410
8 0.416360 0.868021 0.242318 0.926386 0.825539 0.869072 0.649840 0.644573
9 0.018936 0.896625 0.644544 0.822869 0.779568 0.314417 0.486969 0.456262
10 0.449559 0.000391 0.487652 0.525436 0.157062 0.336376 0.383195 0.889668

LW input data
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0.043039 0.883915 0.526806 0.679981 0.508092 0.262151 0.951689 0.677082
4 0.884328 0.503495 0.475520 0.932677 0.929271 0.400384 0.892766 0.825893
5 0.317119 0.818725 0.616227 0.182688 0.183484 0.050599 0.975772 0.353146
6 0.849597 0.001014 0.084951 0.859124 0.189599 0.038893 0.759658 0.326692
7 0.082559 0.191408 0.447837 0.014648 0.012876 0.479664 0.057522 0.011973
8 0.247371 0.121516 0.716245 0.629854 0.905881 0.206362 0.135625 0.075361
9 0.856573 0.172818 0.184829 0.802924 0.767476 0.650117 0.396199 0.474076
10 0.306695 0.015107 0.049570 0.560368 0.326504 0.505363 0.105989 0.239043

Rot input data
1 0 0.652409 0 0.000011 0.000007 0.277951 0.049359 0.040243
2 0.000167 0.000250 0.156069 0.133972 0.279440 0 0.764219 0.840597
3 0.952683 0.742995 0.051011 0.980236 0.842737 0.094734 0.951273 0.859309
4 0.492108 0.033846 0.238144 0.713371 0.830867 0.628785 0.767785 0.630855
5 0.858886 0.807524 0.594868 0.263077 0.291826 0.111183 0.376281 0.114936
6 0.303912 0.378293 0.567738 0.450278 0.429716 0.126456 0.479104 0.182860
7 0.634938 0.104833 0.272378 0.010423 0.453412 0.707197 0.229118 0.961944
8 0.589786 0.577970 0.340470 0.727833 0.669176 0.470889 0.233397 0.792162
9 0.960757 0.203889 0.392777 0.767143 0.561793 0.315061 0.489857 0.997386
10 0.379779 0.693256 0.006520 0.040628 0.026037 0.920812 0.386460 0.390020

Experimental results show that the modified AES block cipher requires three rounds to
achieve randomness for all four datasets AV1, HW, LW and Rot. Although modified
AES requires one more round than original AES to achieve randomness for Rot dataset,

 On generating new key dependent XOR tables to improve AES security 37

the overall result still requires three rounds equivalent to original AES to achieve
randomness for all four datasets.

6 Conclusions

Studying of dynamic methods and techniques to increase the security of block ciphers in
general and AES in particular is very important today due to the strong development of
cryptanalysis as well as the variety of new attacks on block ciphers. The more different
dynamic methods of block ciphers are available, the more candidates can be chosen to
improve the security of the block ciphers against today’s strong attacks. In this paper,
we have proposed a method to make the AES block cipher dynamic through new
key-dependent XOR tables. We also propose a procedure to evaluate the randomness of
the output of a block cipher and apply this procedure to evaluate the randomness of the
modified AES block cipher. We also analyse the security of the modified AES block
cipher and evaluate the randomness using NIST statistical criterion. The proposed
method contributes to improve the security of the AES block cipher against many current
strong attacks.

References
Agarwal, P., Singh, A. and Kilicman, A. (2018) ‘Development of key-dependent dynamic S-boxes

with dynamic irreducible polynomial and affine constant’, Advances in Mechanical
Engineering, Vol. 10, No. 7, pp.1–18.

Al-Dweik, A.Y., Hussain, I., Saleh, M. and Mustafa, M.T. (2022) ‘A novel method to generate
key-dependent s-boxes with identical algebraic properties’, Journal of Information Security
and Applications, Vol. 64, p.103065, ISSN: 2214-2126 [online] https://doi.org/10.1016/
j.jisa.2021.103065; https://www.sciencedirect.com/science/article/pii/S2214212621002477.

Al-Wattar, A.H., Mahmod, R., Zukarnain, Z.A. and Udzir, N. (2015) ‘A new DNA based approach
of generating key dependent MixColumns transformation’, International Journal of Computer
Networks & Communications (IJCNC), Vol. 7, No. 2, pp.93–102.

Assafli, H.T. and Hashim, I.A. (2020) ‘Generation and evaluation of a new time-dependent
dynamic S-box algorithm for AES block cipher cryptosystems’, in IOP Conference Series:
Materials Science and Engineering, Vol. 978, No. 1, p.012042.

Bassham III, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Barker, E.B., Vo, S. et al.
(2010) A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications, NIST Special Publication No. 800-22.

Daemen, J. and Rijmen, V. (2002) The Design of Rijndael, Vol. 2, Springer-Verlag, Berlin,
Heidelberg.

Doğanaksoy, A., Ege, B., Koçak, O. and Sulak, F. (2010) Cryptographic Randomness Testing of
Block Ciphers and Hash Functions, Cryptology ePrint Archive.

Ejaz, A., Shoukat, I.A., Iqbal, U., Rauf, A. and Kanwal, A. (2021) ‘A secure key dependent
dynamic substitution method for symmetric cryptosystems’, PeerJ Computer Science, Vol. 7,
p.e587, PMID: 34395857, PMCID:PMC: 8323725 [online] https://doi.org/10.7717/peerj-
cs.587.

Hambouz, A.A. (2022) DLL-AES: Dynamic Layers Lightweight AES Algorithm, Doctoral
dissertation, Princess Sumaya University for Technology, Jordan.

 38 T.T. Luong and H.D. Linh

Heys, H.M. and Tavares, S.E. (1996) ‘The design of product ciphers resistant to differential and
linear crypt-analysis’, Journal of Cryptography, Vol. 9, No. 1, pp.1–19.

Ismail, I., Galal-Edeen, G., Khattab, S. and Moustafa, M. (2012) ‘Performance examination of AES
encryption algorithm with constant and dynamic rotation’, International Journal of Reviews in
Computing, Vol. 12.

Juremi, J., Mahmod, R., Zukarnain, Z.A. and Yasin, S.M. (2017) ‘Modified AES s-box based on
determinant matrix algorithm’, International Journal of Advanced Research in Computer
Science and Software Engineering, Vol. 7, No. 1, pp.110–116.

Keliher, L.T. (2003) Linear Cryptanalysis of Substitution-Permutation Networks, Queen’s
University.

Lai, X., Massey, J.L. and Murphy, S. (1991) ‘Markov ciphers and differential cryptanalysis’,
in Proceedings of Advances in Cryptology, LNCS 473, Springer, pp.389–404.

Li, R., Sun, B. and Li, C. (2011) ‘Impossible differential cryptanalysis of SPN ciphers’, IET
Information Security, Vol. 5, No. 2, pp.111–120.

Manoj Kumar, T. and Karthigaikumar, P. (2020) ‘A novel method of improvement in Advanced
Encryption Standard algorithm with dynamic shift rows, sub byte and mixcolumn operations
for the secure communication’, International Journal of Information Technology, September,
Vol. 12, pp.825–830, Springer, DOI [online] https://doi.org/10.1007/s41870-020-00465-1;
https://link.springer.com/article/10.1007/s41870-020-00465-1#citeas.

Matsui, M. (1994) ‘Linear cryptanalysis method for DES cipher’, in Advances in Cryptology –
EUROCRYPT’93: Workshop on the Theory and Application of Cryptographic Techniques,
1993 Proceedings 12, Springer, Berlin, Heidelberg, Lofthus, Norway, 23–27 May,
pp.386–397.

Menezes, A.J., Van Oorschot, P.C. and Vanstone, S.A. (2018) Handbook of Applied Cryptography,
CRC Press, DOI: 10.1201/9781439821916 [online] https://cacr.uwaterloo.ca/hac/.

Murphy, S. and Robshaw, M.J.B. (2002) ‘Key-dependent S-boxes and differential cryptanalysis’,
Designs, Codes and Cryptography, Vol. 27, pp.229–255, DOI: 10.1023/A:1019991004496
[online] https://www.semanticscholar.org/paper/Key-Dependent-S-Boxes-and-Differential-
Murphy-Robshaw/d7e4f403886fb704928d25e7b465c79fb3909a8e.

Murtaza, G., Khan, A.A., Alam, S.W. and Farooqi, A. (2011) Fortification of AES with Dynamic
Mix-column Transformation, IACR Cryptology ePrint Archive.

Saarinen, M.J.O. (2022) ‘SP 800-22 and GM/T 0005-2012 tests: clearly obsolete, possibly
harmful’, in 2022 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), pp.31–37.

Salih, A.I., Alabaich, A. and Tuama, Y. (2020) ‘Enhancing advance encryption standard security
based on dual dynamic XOR table and mixcolumns transformation’, Indonesian Journal of
Electrical Engineering and Computer Science, Vol. 19, No. 3, pp.1574–1581.

Salih, A.I., Alabaichi, A. and Abbas, A.S. (2019) ‘A novel approach for enhancing security of
advance encryption standard using private XOR table and 3D chaotic regarding to software
quality factor’, ICIC Express Letters Part B: Applications, An International Journal of
Research and Surveys, Vol. 10, No. 9, pp.823–832.

Shamsabad, M.R.M. and Dehnavi, S.M. (2020) ‘Dynamic MDS diffusion layers with efficient
software implementation’, International Journal of Applied Cryptography, Vol. 4, No. 1,
pp.36–44.

Soto, J. (1999) Randomness Testing of the Advanced Encryption Standard Candidate Algorithms,
p.9, US Department of Commerce, Technology Administration, National Institute of
Standards and Technology.

Sulak, F. (2011) Statistical Analysis of Block Ciphers and Hash Functions, PhD – Doctoral
Program, Middle East Technical University [online] https://open.metu.edu.tr/handle/11511/
20626.

 On generating new key dependent XOR tables to improve AES security 39

Xu, T., Liu, F. and Wu, C. (2018) ‘A white-box AES-like implementation based on key-dependent
substitution-linear transformations’, Multimedia Tools and Applications, July, 10 March,
Vol. 77, DOI [online] https://doi.org/10.1007/s11042-017-4562-8; https://link.springer.com/
article/10.1007/s11042-017-4562-8#citeaspp.18117–18137.

Yousif, I.A. (2019) ‘Proposed a permutation and substitution methods of serpent block cipher’,
Ibn AL-Haitham Journal for Pure and Applied Science, Vol. 32, No. 2, pp.131–144.

