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Abstract: Although block ciphers are widely used and are quite secure, there 
are still many types of attacks against components of block ciphers, and the 
Advanced Encryption Standard (AES) block cipher is no exception. To 
improve the security of AES, there have been many studies in the literature on 
methods of making this block cipher dynamic. There have been many works 
focused on the methods of making dynamic at the S-box and the MixColumn 
transformation of AES. In this paper, we propose a method to make dynamic at 
the Addroundkey transformation of AES using new key dependent XOR tables. 
We also propose a procedure to evaluate the randomness of the output of a 
block cipher and apply this procedure to evaluate the randomness of the 
modified AES block cipher using new XOR tables. The proposed dynamic 
method based on new XOR tables can help improve the security of the AES 
block cipher against many of today’s strong attacks on block ciphers. 
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1 Introduction 

In the Advanced Encryption Standard (AES) selection project (Daemen and Rijmen, 
2022), there were five finalists, but only Rijndael was the winning algorithm. AES has 
been selected as the block cipher standard for the US Government by the National 
Institute of Standards and Technology (NIST) released on November 26, 2001 and is 
specified in the Federal Information Processing Standard (FIPS 197). The AES algorithm 
is a block cipher with substitution – permutation network (SPN) structure (Keliher, 2003; 
Li et al., 2011), so it consists of three layers: substitution layer, diffusion layer and key 
addition layer. 

To improve the security of block ciphers, people find ways to make them dynamic. 
To make an SPN block cipher dynamic, you can make one of its components dynamic. 
Currently, there are many works in these directions, which can be made dynamic at the 
diffusion layer or the substitution layer, or both. For SPN in general and AES in 
particular, there are some works in the direction of animating in the diffusion layer such 
as Al-Wattar et al. (2015), Ismail et al. (2012), Murtaza et al. (2011) and Shamsabad and 
Dehnavi (2020). Some studies in the direction of making dynamic at the S-box such as 
Agarwal et al. (2018), Al-Dweik et al. (2022), Assafli and Hashim (2020), Ejaz et al. 
(2021), Juremi et al. (2017) and Murphy and Robshaw (2002), and some works 
investigated the way of making dynamic at both diffusion and substitution layers as in 
Hambouz (2022), Manoj Kumar and Karthigaikumar (2020), Xu et al. (2018) and Yousif 
(2019). 

For the direction of making the SPN block cipher dynamic at the diffusion layer,  
Al-Wattar et al. (2015) proposed a method for animating the AES block cipher using a 
dynamic MixColumn transformation. This new MixColumn transformation uses  
key-dependent MDS matrices based on key-dependent DNA structures and processes. 
The authors analysed the security of the new MixColumn and tested the randomness 
through NIST tests. Ismail et al. (2012) proposed a dynamic AES (DRAES) block cipher 
using a rotation, the amount of rotating depends on the data and the key in the AES key 
scheme. Murtaza et al. (2011) used a dynamic MixColumn transformation for AES. The 
new MDS matrices are generated for the MixColumn by scalar multiplication of the rows 
of the MixColumn matrix and depend on a secret key. Shamsabad and Dehnavi (2020) 
presented a family of n × n binary matrices that satisfy several properties, from which it 
is possible to animate cyclic AES-like matrices and some recursive MDS matrices with 
less overhead in software. 

For the direction of animating the SPN block cipher in the S-box, Agarwal et al. 
(2018) proposed an algorithm to generate a key-dependent dynamic S-box using an 
irreducible polynomial and an affine constant. The idea is that whenever a bit of the key 
is added, the algorithm chooses an irreducible polynomial from the 30 available 
irreducible polynomials, an affine constant chosen from all the affine values from 0 to 
255, and an XOR value of all the bytes of the key. The S-box’s values depend on these 
three parameters. Assafli and Hashim (2020) proposed a dynamic S-box generation 
algorithm for the timestamp-dependent AES block cipher. The main strength of the 
proposed method is that the ciphertext changes while keeping the constant encryption key 
guaranteeing different encryption results for the same data. The authors also studied and 
analysed the strength and quality of the new S-box using the avalanche criterion and the 
strict avalanche criterion (SAC). Juremi et al. (2017) proposed a method generating AES 
dynamic S-boxes using a DeterminantRotation transformation. Each dynamic S-box is 
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generated for each round by performing a determinant matrix calculation by rotating the 
positions of the AES S-box. The authors tested the randomness and the avalanche 
criterion performed on the output to prove the security of the newly proposed algorithm. 
Murphy and Robshaw (2002) studied how to perform cryptanalysis with key-dependent 
S-boxes. They developed a framework for differential cryptanalysis of key-dependent  
S-boxes. Al-Dweik et al. (2022) provided an algorithm schema for generating  
key-dependent dynamic S-boxes having the same algebraic properties as those of the 
original S-box, including nonlinearity, SAC and bit independence criteria (BIC). Ejaz  
et al. (2021) designed a key-dependent dynamic S-box with dynamic permutations to 
generate symmetric block ciphers with optimal security. The proposed method of creating 
a dynamic S-box was experimentally evaluated through some measures such as BIC, 
nonlinearity, hamming distance, balanced output, SAC, and differential and linear 
approximation probabilities. 

For the direction of animating SPN block ciphers at both substitution and diffusion 
layers in a block cipher, Yousif (2019) proposed a dynamic SPN block cipher based on 
the Serpent block cipher. The Serpent is one of the candidates for AES block cipher. 
Yousif (2019) proposed some dynamic methods for permutations, substitutions, and key 
generation based on chaotic mappings for added security. Manoj Kumar and 
Karthigaikumar (2020) proposed a key-dependent AES algorithm to secure data over the 
internet. This proposed algorithm has a better avalanche effect and SAC when compared 
to AES. Hambouz (2022) proposed a lightweight encryption algorithm based on AES 
named DLL-AES. DLL-AES animated S-box, ShiftRows, and MixColumn in AES 
depending on a master key. Instead of a single S-box, DLL-AES has four small-sized  
S-boxes. Xu et al. (2018) proposed an AES-like cipher by replacing AES’s S-box and 
MixColumn matrix with key-dependent transformations that retain good cryptographic 
properties. 

The above works mainly focus on animating methods for MDS matrices and S-boxes. 
Recently, Salih et al. (2019, 2020) proposed some dynamic methods for AES based on 
XOR tables. Specifically, in Salih et al. (2019), the authors used 3D logistic maps to 
create a private XOR table that can be used to replace the original AES XOR table. In 
Salih et al. (2020), the authors used Chebyshev polynomial mapping to generate two new 
XOR tables used for AES rounds alternatively. Furthermore, in Salih et al. (2020), the 
authors also generated a dynamic MDS matrix from this mapping to replace the MDS 
matrix in AES’s MixColumn. In Salih et al. (2019, 2020), the authors evaluated the 
security of modified AES block cipher by some different criteria such as NIST test, 
diehard test, correlation coefficient, ENTROPY and histogram. 

It can be seen that the methods proposed in Salih et al. (2019, 2020) are quite new 
and interesting, which can increase the security of the AES algorithm. However, by 
carefully studying the results of Salih et al. (2019, 2020), we find that there are many 
inaccuracies in the proposals of Salih et al. (2019, 2020). In addition, the method of 
evaluating the randomness of AES and modified AES used by the authors also has many 
unreasonable problems. We will mention more detail on these in Section 2. 

For block ciphers in particular and cryptographic primitives in general, the 
assessment of randomness is an indispensable requirement in evaluating the security of 
those cryptographic primitives. Evaluation of the randomness of block ciphers often uses 
statistical tests. Since the approximation and asymptotic approaches used in the  
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distribution functions of statistical tests force the users to use long sequences, a general 
approach to solve this problem is concatenating the outputs of block ciphers or hash 
functions to form long sequences. In the selection of the AES finalists, NIST used this 
method (Soto 1999) that concatenates the output strings of block ciphers to generate long 
sequences of length 220 bit and then used the NIST SP 800-22 (Bassham et al., 2010) test 
suite to evaluate the randomness. However, the nature of block ciphers requires that the 
proposed tests and test parameters focus specifically on ‘sequences of short length’, 
which are derived directly from the outputs of these block ciphers. Doğanaksoy et al. 
(2010) also used the approach of concatenating the outputs of the block cipher into a long 
sequence, then used four tests: the SAC test, linear span test, collision test, and coverage 
test to evaluate some properties of the block ciphers. 

Sulak (2011) proposed a method to evaluate the randomness of block ciphers and 
hash functions by using some non-random input datasets. The corresponding outputs of 
the cryptographic primitives will be evaluated for randomness by some statistical tests. 

In this paper, we propose a method to create new key-dependent XOR tables to 
improve the security of the AES block cipher. We also propose a procedure to evaluate 
the randomness of the output of a block cipher and apply this procedure to evaluate the 
randomness of AES and the modified AES using these new XOR tables. 

The article is organised as follows. In Section 2, we present related works and some 
comments on the results in Salih et al. (2019, 2020). Section 3 presents the proposed 
algorithm to create new key-dependent XOR tables. Section 4 proposes a procedure for 
evaluating the randomness of the output of a block cipher. Section 5 analyses the security 
of the modified AES block ciphers. Section 6 is the conclusions. 

2 Related works 

2.1 Transformations in AES 

The round function of AES (Daemen and Rijmen, 2002) consists of four transformations: 

• SubByte: Performs byte substitution of the state array using a (S-box) substitution 
table. 

• ShiftRow: Performs left-rotation of the last three rows of the state array, specifically, 
left-rotation 1 byte in row number 2, left-rotation 2 byte in row number 3,  
left-rotation 3 byte in row number 4. The first row of the state array is unchanged. 

• MixColumn: Multiplies the state array by a 4 × 4 circulant MDS matrix. 

• AddRoundKey: Performs an exclusive OR operation between a round key and the 
state array. In practice, one will create a pre-stored XOR table (Table 1) for this 
transformation. 

2.2 Remarks on the results in Salih et al. (2019, 2020) 

Through studying the methods proposed in Salih et al. (2019, 2020), we make some 
comments as follows: 
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1 Remarks on Salih et al. (2019): 
• In Salih et al. (2019), the authors showed three properties of the new XOR table, 

but these three properties are not enough to ensure the correct decryption 
process. After creating the private XOR table, the authors did not specify the 
correctness of this XOR table. 

• The examples given in Salih et al. (2019) are not accurate compared to the 
actual values in the private XOR table suggested by the authors [see examples 
and Figure 2 in Salih et al. (2019)]. 

2 Remarks on Salih et al. (2020): 
• In the proposed algorithm of Salih et al. (2020) for creating two dynamic XOR 

tables, in step e creating two arrays X, Y but also based on the properties 
indicated in Salih et al. (2019), so it is not enough to ensure the decryption is 
correct. 

• In Salih et al. (2020), the authors used the Z array to generate a key matrix, and 
this key matrix is used to perform some permutations on the AES MixColumn 
matrix to generate a dynamic MDS matrix. However, this dynamic MDS matrix 
is not an MDS matrix because it has at least two singular square submatrices 
(see Figure 1). 

Figure 1 The dynamic MDS matrix generated by Salih et al. (2020) (see online version  
for colours) 

   

In addition to the above comments, it can be seen that Salih et al. (2019, 2020) used 3D 
logistic and Chebyshev mappings to generate secret number keys. These methods are not 
really effective. 

On the other hand, the common point of these two papers is that the evaluation of 
proposed block ciphers used several methods such as: NIST test, diehard test, histogram, 
correlation coefficient and ENTROPY. However, there are many unreasonable and 
inaccurate points in these assessments. Details will be analysed as below: 

• The data generation for evaluation in Salih et al. (2019, 2020) is not clear. 
Specifically, the authors did not specify how to encrypt 106 bits of plaintext with  
128 different keys to obtain 128 ciphertexts of length 106. If only encrypting each 
block a time, the length of the ciphertext must be divisible by 128 (since each block 
has 128 bit), however 106 is not divisible by 128. Also, when performing  
block-by-block encryption will result in the same input blocks will produce the same 
output blocks (ciphertexts). Thus, the output data is no longer random. Furthermore, 
as recommended in the NIST SP 800-22 standard, the sequence length is 106 and the 
number of sequences needed is 1,000. Therefore, the author’s approach is not 
reasonable when using only 128 sequences for evaluation. 
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• There is a mistake in presenting the results of the statistical tests of Salih et al. 
(2020). Specifically, on page 1578 of Salih et al. (2020), the authors made a 
comment that the AES algorithm does not pass the FFT standard. But the result table 
[Table 2 in Salih et al. (2020)] showed that AES still passes the FFT standard, the 
criteria it fails must be overlapping template. 

• According to the NIST SP 800-22 standard, a data file is considered random only 
when the success rate is in the range [0.9805607, 0.9994392] (Bassham et al., 2010). 
As such, if the pass rate is 1 then the data is not random. Therefore, if the above 
requirements are applied, according to Table 2 in Salih et al. (2020), the AES does 
not pass the criterion of non-overlapping template, long run, rank, linear complexity; 
according to Table 1 in Salih et al. (2020), the algorithm proposed by the authors 
does not pass the criterion of FFT, serial 1, linear complexity. However, in these 
tables, the authors still marked this criterion as passed. This is not exactly as required 
by NIST SP 800-22. 

• Besides, in NIST SP 800-22, the non-overlapping template test has 148 p-values, 
Random excursions has 8 p-values, random excursions variants has 18 p-values. But 
in Salih et al. (2019, 2020), only one p-value is given for each criteria without 
specifying how it is the p-value in the case of a specific parameter. 

Table 1 The original XOR table in AES 

XOR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

3 Proposed algorithm for creating new key-dependent XOR tables 

From the remarks in Section 2.2, we first give the necessary properties of an XOR table 
to be satisfied to ensure that the decryption process is performed correctly. Those 
properties include: 
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• The elements on each column and each row of the XOR table belong to [0, 15] and 
are distinct elements. 

• The XOR table is symmetric by the main diagonal. 

• If a XOR b = c, then b XOR c = a and a XOR c = b, for every element a, b, c in the 
XOR table. 

Algorithm 1 Creating 02 new XOR tables 

Input: a secret key x0 consists of n bit; the original XOR table of AES (Table 1); 
Output: two new XOR tables A and B. 
Step 1 Use a pseudo-random number generator G with the key seed x0. The output is then a 

pseudo-random bit sequence. Take two strings, each consists of 4 bits of the sequence, 

starting with the 
th

4
n 
  

 and 
th

2
n 
  

 bits respectively, and then convert them to decimal, 

yielding two numbers in [0, 15], denoted a and b. 
Step 2 
 • Add all the cells of the original AES XOR table (Table 1) with the number a, then 

divide the results modulo by 16, to get a new XOR table, denoted A1. 
 • Add all cells of the original AES XOR table (Table 1) with the number b, then 

divide the results modulo by 16, to get a new XOR table, denoted B1. 
Step 3 
 • Shift the positions of rows and columns in two tables A1 and B1 so that the first  

row and column in these two tables is an ascending sequence from 0 to 15. Then, 
two new XOR tables are obtained, respectively A and B. 

In the following, Algorithm 1 is proposed to generate new XOR tables depending on a 
given secret key. 

We should choose the pseudo-random number generator G in Algorithm 1 as a 
cryptographically secure pseudo-random number generator (Bassham et al., 2010; 
Saarinen, 2022). 

Remark 1: This remark is about the correctness of the new XOR tables. The original AES 
XOR table satisfies the necessary properties of an XOR table. Algorithm 1 simply adds 
all the cells of that original XOR table with a number of [0, 15] and then modulo by 16. 
Thus, the new XOR table can preserve the required properties of an XOR table. We also 
conduct an experimental check that the new XOR tables satisfy all the three required 
properties of an XOR table. 

Remark 2: The numbers a, b in Algorithm 1 belong to [0, 15], so there are all 16 possible 
dynamic XOR tables according to this algorithm. 

3.1 Application of new XOR tables to improve AES block cipher 

Executing Algorithm 1 yields two new key-dependent XOR tables, denoted A and B. 
XOR table A will be used for odd rounds, and XOR table B will be used for even rounds 
of AES. 
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Table 2 XOR table A1 

XOR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 
2 2 1 4 3 6 5 8 7 10 9 12 11 14 13 0 15 
3 3 4 1 2 7 8 5 6 11 12 9 10 15 0 13 14 
4 4 3 2 1 8 7 6 5 12 11 10 9 0 15 14 13 
5 5 6 7 8 1 2 3 4 13 14 15 0 9 10 11 12 
6 6 5 8 7 2 1 4 3 14 13 0 15 10 9 12 11 
7 7 8 5 6 3 4 1 2 15 0 13 14 11 12 9 10 
8 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 
9 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 
10 10 9 12 11 14 13 0 15 2 1 4 3 6 5 8 7 
11 11 12 9 10 15 0 13 14 3 4 1 2 7 8 5 6 
12 12 11 10 9 0 15 14 13 4 3 2 1 8 7 6 5 
13 13 14 15 0 9 10 11 12 5 6 7 9 1 2 3 4 
14 14 13 0 15 10 9 12 11 6 5 8 7 2 1 4 3 
15 15 0 13 14 11 12 9 10 7 8 5 6 3 4 1 2 
0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

Table 3 XOR table B1 

XOR 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 

To apply Algorithm 1 to improve the security of the AES block cipher, we find a true 
random key derived from a true random number generator source (https://www.random. 
org/bytes/). This key is used as the input to Algorithm 1. Executing Algorithm 1 with this 
key as input, two values are obtained: 
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1a =  

8b =  

From this, two new XOR tables A1 and B1 are obtained as shown in Table 2 and Table 3. 
Table 4 XOR table A for odd rounds 

XOR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
2 15 2 1 4 3 6 5 8 7 10 9 12 11 14 13 0 
3 14 3 4 1 2 7 8 5 6 11 12 9 10 15 0 13 
4 13 4 3 2 1 8 7 6 5 12 11 10 9 0 15 14 
5 12 5 6 7 8 1 2 3 4 13 14 15 0 9 10 11 
6 11 6 5 8 7 2 1 4 3 14 13 0 15 10 9 12 
7 10 7 8 5 6 3 4 1 2 15 0 13 14 11 12 9 
8 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 
9 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 
10 7 10 9 12 11 14 13 0 15 2 1 4 3 6 5 8 
11 6 11 12 9 10 15 0 13 14 3 4 1 2 7 8 5 
12 5 12 11 10 9 0 15 14 13 4 3 2 1 8 7 6 
13 4 13 14 15 0 9 10 11 12 5 6 7 9 1 2 3 
14 3 14 13 0 15 10 9 12 11 6 5 8 7 2 1 4 
15 2 15 0 13 14 11 12 9 10 7 8 5 6 3 4 1 

Table 5 XOR table B for even rounds 

XOR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 
1 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 
2 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 
3 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 
4 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 
5 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 
6 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 
7 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
9 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 
10 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 
11 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 
12 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 
13 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 
14 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 
15 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 
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Next, shift the positions of rows and columns in two tables A1 and B1 so that the first row 
and column in these two tables is an ascending sequence from 0 to 15, yielding two new 
XOR tables, denoted A and B, as shown in Table 4 and Table 5. 

Then, we use the XOR table A for the odd rounds, the XOR table B for the even 
rounds of AES to perform encryption and decryption. 

4 Proposing a procedure to evaluate the randomness of the output of block 
ciphers 

In this section, we propose an efficient procedure as shown in Figure 2 to evaluate the 
output randomness for a block cipher. Our process does not need to concatenate the 
outputs of the block cipher into a long sequence through a mode of operation, but can 
efficiently evaluate the randomness of the block cipher by statistical tests for sequences 
of short length. Specifically, our process is as follows: 

Step 1 Generate a non-random dataset as input for the block cipher as detailed below. 
Here, we consider four types of input datasets: low weight (LW) plaintext 
datasets, high weight (HW) plaintext datasets, 1-bit plaintext avalanche datasets, 
and plaintext rotation datasets. 

Step 2 For each round-reduced version of the block cipher, compute the output dataset 
corresponding to the input dataset generated in Step 1 and the arbitrary key (we 
can consider the worst case as non-random key). For example, if the input 
dataset is LW128, then we need to compute ten output datasets corresponding to 
the modified block cipher versions with round number from 1 to 10. Each output 
dataset consists of 349,632 corresponding to 349,632 output sequences of  
128-bit input sequences in the LW128 input dataset. 

Step 3 For each output dataset, use the NIST two-level test approach with some 
correction for statistical tests for short sequences to calculate the corresponding 
p-values for each sequence in the output dataset. 

Step 4 Summarise the results and conclusions. A block cipher version with round 
number r is considered to be random if all the corresponding output datasets 
pass all the below statistical tests. 

Note: The number of rounds r here corresponds to the number of rounds of the block 
cipher. 

4.1 Non-random input plaintext datasets 

We use special types as follows: 

1 LW plaintext: A LW plaintext dataset is made by LW binary sequences. The 
plaintext length corresponds to the proposed block cipher algorithms with different 
block size versions. In the 128-bit case, the dataset consists of 128-bit binary 
sequences whose weight does not exceed 3. Specifically, the number of plaintexts 
with length of m bits and each plaintext with Hamming weight less than or equal to 
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k, denoted by ,k
nN  is calculated as 

1
.

kk
n i

n
N

i=

 
=  

 
  Then, the number of plaintexts 

for different lengths is 349,632 for 128-bit block length. 

2 HW plaintext: A HW plaintext dataset is formed by selecting HW plaintexts and they 
are formed similar to the case of LW plaintext. In other words, the high density 
inputs are the bitwise complement of the low density inputs. 

3 1-bit plaintext avalanche: In order to form 1-bit plaintext avalanche (Av1) dataset, 
firstly a random plaintext R of length m is chosen. Then, each time by flipping 
another bit of R, a set of m plaintexts is formed and the corresponding ciphertexts are 
obtained. The same procedure is applied to k different plaintexts to get a set of mk 
sequences. The values of k for 128-bit input are 1,048,576. 

4 Plaintext rotation: A random plaintext R of length m is chosen to form plaintext 
rotation (Rot) dataset, and a set of m plaintexts is formed by consecutive 1-bit 
rotations of R and the corresponding ciphertexts are obtained. The same procedure is 
applied to k different plaintexts to get a set of mk sequences. 

Figure 2 Procedure of randomness evaluation for block ciphers 

Input data sets
(non-random)

Block cipher
 r rounds

Coresponding output 
data sets

Two-levels Test

Conclude Random

Pass all tests

Set of p-values 
coresponding to 
statistical tests

Fail for only 
one test

Conclude Non-
Random
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4.2 Two-level test 

In Step 3, we use two-level test approach in the NIST SP 800-22 test suite (Bassham  
et al., 2010): Level 1 is checking the proportion of sequences with p-values greater than a 
threshold; the second is checking the distribution of the p-values. 

For Level 1, we count the number of sequences in the sample that have P-value ≥ α 
and are denoted by mp. Then, under the assumption of randomness, mp follows the 
binomial distribution ( , 1 )m − α  that is approximate to the normal distribution 

( (1 ), (1 ))m m− − α α α  when n is large enough, where m is the number of test 
sequences. Therefore, the percentage of sequences that pass a test (= mp / m) is 

approximate to (1 )(1 ), .
m
− − 

 


α αα  The acceptable interval of mp / m is determined 

using the following level of significance (with α = 0.01): 

(1 ) (1 )1 3 1 3 .pm
m m m
− −− − < < − +α α α αα α  

If the pass rate is outside the range above, there is evidence that the data is not random. 
For Level 2, we have a set of p-values corresponding to the output dataset for each 

statistical test. Then, apply the good of fitness test to check if the p-values have a 
theoretically consistent distribution on the [0, 1] segment, by dividing the [0, 1] segment 
into ten subintervals [0.0, 0.1], (0.1, 0.2], …, (0.9, 1.0]. Let m be the number of  
test sequences, and the number of sequences with p-values in the ith interval for  
i = 1, 2, ···, 10. Then, the statistic X follows a χ2 distribution with nine degrees of 
freedom and the p-value of Level 2 is calculated as follows: 

( )210

1

i i

ii

F m p
X

m p=

− ⋅
=

⋅  

29- ,
2 2

χigamc =  
 

p value  

where igamc is an incomplete gamma function. The values pi, 1 ≤ i ≤ 10 have been 
determined in detail in the below. 

If p-value ≥ 0.0001 then the test result is considered to pass, i.e., the distribution of 
the p-values is not far from the theoretical values. 

In this paper, we just consider 128-bit sequences for AES-128 and the modified  
AES-128. The exact distributions for six NIST statistics are in Table 6. 

In five basic test in Menezes et al. (2018), autocorrelation test checks for correlations 
between the sequence s and (non-cyclic) shifted versions of it. Let d be a fixed integer,  
1 ≤ d ≤ n / 2. The number of bits in s not equal to their d-shifts is 

1

0
( ) ,

n d
i i di

A d s s
− −

+=
= ⊕  where ⊕ denotes the XOR operator. 

The statistic used is 

2 ( )
2

n dA d
X

n d

− − 
 =

−
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which approximately follows an (0, 1)  distribution if n – d ≥ 10. 

Table 6 Theoretical distributions of test results for 128-bit sequence 

Sub-interval Frequency 
test Runs test 

Test for 
longest run 

of ones 
Serial test Approximate 

entropy test 
CuSum 

test 

[0.0, 0.1] 0.092690 0.100679 0.095011 0.101931 0.105734 0.083277 
(0.1, 0.2] 0.091993 0.101395 0.104278 0.095514 0.095735 0.102103 
(0.2, 0.3] 0.146253 0.113361 0.101632 0.101915 0.092841 0.079860 
(0.3, 0.4] 0.095504 0.102226 0.106461 0.112556 0.110089 0.104008 
(0.4, 0.5] 0.109829 0.095862 0.102993 0.082076 0.091082 0.130600 
(0.5, 0.6] 0.122433 0.104063 0.120047 0.108904 0.119882 0.078669 
(0.6, 0.7] 0.000000 0.071873 0.077501 0.089985 0.077519 0.076607 
(0.7, 0.8] 0.132306 0.110294 0.109233 0.119499 0.119499 0.086252 
(0.8, 0.9] 0.138606 0.114290 0.089208 0.084588 0.084588 0.153731 
(0.9, 1.0] 0.070386 0.085956 0.093636 0.103031 0.103031 0.104892 

Source: Menezes et al. (2018) 

In this paper, we compute exact distributions for autocorrelation test with d = 1 
(correlation in bits) and d = 8 (correlation in bytes). 

For d = 1, note that the p-value of an array depends only on the value of Sn–1. For a 
given value Sn–1 = k, there are exactly 12 k

nC −  n-bit sequences. 
First, we have the following lemma. 

Lemma 1: Equation x1 + x2 + ··· + xa = b, xi ∈ {0, 1}, 1 ≤ i ≤ a with integers a ≥ b ≥ 0 
have exactly b

aC  solutions. 

Proof: It is easy to see that for b = 0, the equation has a unique solution, 
0

1 21 , 0.a aC x x x= = = = =  
For any b ≤ a, the number of solutions to the equation is the number of ways to 

choose b values out of a and assign them equal to 1. Therefore, the number of solutions 
to the equation is .b

aC  ■ 

Now, we have the following proposition. 

Proposition 1: In the space of n-bit sequences s0s1 ··· sn–1, si ∈ {0, 1}, 0 ≤ i ≤ n – 1, there 

are exactly 12 k
nC −  sequences satisfying 

2
1 10

.
n

n i ii
S s s k

−
− +=

= ⊕ =  

Proof: Let δj = sj ⊕ sj+1, 0 ≤ j ≤ n – 2 then δj ∈ {0, 1}. Apply Lemma 1, the equation 
2

1 0

n
n ji

S δ k
−

− =
= =  have 1

k
nC −  solutions. For a set of solutions (δ0, δ1, ···, δn–2), there are 

exactly two satisfying sequences s0 ··· sn–1 because for each value δi, 0 ≤ i ≤ n – 2 there is 
(si, si+1) satisfying 1 .i i is s δ+⊕ =  Thus, there is a total 12 k

nC −  of sequences that satisfy 
2

1 10
.

n
n i i ii

S s s δ
−

− +=
= ⊕ =  ■ 



   

 

   

   
 

   

   

 

   

    On generating new key dependent XOR tables to improve AES security 29    
 

    
 
 

   

   
 

   

   

 

   

       
 

Then, the probability ( ) 1
1

2 .
2

k
n

n n

CPr S k −
− = =  

The pseudocode of the probability interval computing algorithm is presented in 
Algorithm 2. 
Algorithm 2 Computation probability intervals for autocorrelation test in bit (d = 1) 

Prop_BitAutoCorr(n){ 
 Initialise array of probability values: Pr[10] = {0, ···, 0}. 
 for S ← 0 to n – 1 do { 
 Compute p-value via S, n 
 if p-value in j interval then { 
 Pr[j] = Pr[j] + Pr[Sn–1 = S] 
 } 
 } 
} 

Table 7 shows the theoretical distributions of BitAutoCorr test results for individual 
sequences. 
Table 7 Theoretical distributions of BitAutoCorr test results for individual sequences 

Sub-interval 
Autocorrelation test (d = 1) 

128 160 256 512 
[0.0, 0.1] 0.1098495026 0.1124301194 0.1032997668 0.0926615712 
(0.1, 0.2] 0.1041156515 0.0919094698 0.1070224747 0.1227748137 
(0.2, 0.3] 0.0729494532 0.0624856743 0.1060414054 0.0729268419 
(0.3, 0.4] 0.0880424435 0.1610145475 0.0643152170 0.0879465019 
(0.4, 0.5] 0.1029648915 0.0980846952 0.1505713250 0.1027967555 
(0.5, 0.6] 0.1166935437 0.1084094000 0.0852223753 0.1164603740 
(0.6, 0.7] 0.1281715972 0.1168568857 0.0907205931 0.1278855543 
(0.7, 0.8] 0.1364407325 0.0000000000 0.0950751815 0.0672612360 
(0.8, 0.9] 0.0000000000 0.1228495465 0.0980934413 0.1387970805 
(0.9, 1.0] 0.1407721843 0.1259596616 0.0996382199 0.0704892710 

For d = 8, applying the same argument in the proof of Proposition 1, we have the 
following proposition. 

Proposition 2: In the space of n-bit sequences s0s1 ··· sn–1, si ∈ {0, 1}, 0 ≤ i ≤ n – 1, there 

are exactly 2d k
n dC −  sequences satisfying 

1

0
.

n d
n d i i di

S s s k
− −

− +=
= ⊕ =  Then, we have 

( ) .
2

k
n d

n d n d

C
Pr S k −

− −
= =  

For d = 8, we have: 
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( ) 8
8 8

.
2

k
n

n n

CPr S k −
− −

= =  

The pseudocode of the probability interval computing algorithm is given in Algorithm 3 
as follows. 
Algorithm 3 Computation probability intervals for autocorrelation test in byte (d = 8) 

Prop_ByteAutoCorr(n){ 
 Initialise array of probability values: Pr[10] = {0, ···, 0}. 
 for S ← 0 to n – 1 do { 
 Compute p-value via S, n 
 if p-value in j interval then { 
 Pr[j] = Pr[j] + Pr[Sn–8 = S] 
 } 
 } 
} 

Table 8 shows the theoretical distributions of ByteAutoCorr test results for individual 
sequences. 
Table 8 Theoretical distributions of ByteAutoCorr test results for individual sequences 

Sub interval 
Autocorrelation test (d = 8) 

128 160 256 512 
[0.0, 0.1] 0.0824074794 0.0881746480 0.1122155681 0.0992339139 
(0.1, 0.2] 0.0882377338 0.1354384538 0.0700378602 0.0971560850 
(0.2, 0.3] 0.1446580877 0.0680413496 0.0980850582 0.1092047340 
(0.3, 0.4] 0.0961199194 0.0806776002 0.1287998752 0.0917978299 
(0.4, 0.5] 0.1115677636 0.0931769467 0.0758017644 0.1066825418 
(0.5, 0.6] 0.1252690679 0.1048240651 0.0828086502 0.1201174264 
(0.6, 0.7] 0.0000000000 0.1148756877 0.0890192990 0.0643483118 
(0.7, 0.8] 0.1360681255 0.1226375585 0.1921977440 0.1352417030 
(0.8, 0.9] 0.1429868438 0.1275430609 0.1004195089 0.0699293336 
(0.9, 1.0] 0.0726849789 0.0646106295 0.0506146718 0.1062881206 

5 Security analysis of modified AES algorithm 

5.1 Security analysis 

Currently, there are many types of attacks on SPN block ciphers, of which the two most 
strong attacks are linear attacks and differential attacks. The linear attack is a kind of 
attack introduced by Matsui (1994). The linear attack (Heys and Tavares, 1996; Matsui, 
1994) is a known plaintext attack that requires the collection of a large number of 
plaintext and ciphertext pairs corresponding to an unknown key to be searched. The 
differential attack (Lai et al., 1991; Matsui, 1994) is a form of selected plaintext attack 
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that requires the collection of a large number of ciphertexts generated by pre-selected 
plaintexts. 

For linear attacks, the strongest known version of the attack is Matsui’s (1994) 
Algorithm 2. The data complexity (number of plaintext/ciphertext pairs) of Matsui’s 
Algorithm 2 against linear attack is given by the following formula (Keliher, 2003): 

[1 ] ( , )L T

cN
ELP a b

=


 (1) 

The data complexity (number of plaintext/ciphertext pairs) against differential attack is 
(Keliher, 2003): 

[1 ]
1
(Δ , Δ )D T

N
EDP X Y

=


 (2) 

where ELP[1…T](a, b) is the average linear probability over 1…T rounds with input and 
output mask are a and b, respectively. Similarly, EDP[1…T](∆X, ∆Y) is the probability of 
the average differential probability over 1…T rounds with input and output differences 
are ∆X and ∆Y, respectively (see more in Keliher, 2003). 

Thus, to successfully perform these two types of linear and differential attacks, one 
must collect an enormous number of plaintext/ciphertext pairs. For example, with the 
DES algorithm, if a cryptanalyst expects successfully perform the linear attack, he must 
collect about 247 plaintext/ciphertext pairs (Matsui, 1994). This number is a large one. 

However, there is a crucial point to note here, to perform these two types of attacks, 
the cryptanalyst must know each component in the structure of the block cipher. For 
example, with the AES algorithm, cryptanalysts need to know the exact S-box, 
MixColumn matrix, ShiftRow operation, and XOR operation used in AES before they 
can attack AES by linear or differential ones. But when we animate any component of 
AES, it means that the cryptanalyst does not know exactly what that component is. So 
they meet more difficulties finding the exact part made dynamic in AES and then proceed 
with the regular cryptanalysis. 

Thus, if a cryptanalyst wants to perform a linear or differential attack on a dynamic 
block cipher, they must perform the following steps: 

Step 1 Try (by exhausting) the animated component in the block cipher. Assuming the 
candidate for this component is Xi (corresponding to the ith attempt). 

Step 2 Carry out linear/differential attacks with a dynamic block cipher associated with 
a dynamic component Xi (in Step 1). The cryptanalyst then needs to collect T 
plaintext/ciphertext pairs. Then perform the cryptanalysis steps as usual. 

Step 3 If the cryptanalysis in Step 2 is unsuccessful, return to Step 1. 

The above three-step process ends when the cryptanalyst successfully executes for 
cryptanalysis the block cipher with a candidate of the dynamic component. 

Thus clearly, in terms of data complexity, instead of T plaintext/ciphertext pairs, the 
cryptanalyst would have to collect nT plaintext/ciphertext pairs (with n attempts). In 
terms of time complexity, it also increases accordingly. Therefore, we can assert that 
animating block ciphers will greatly increase security of block ciphers. 

In this paper, for the modified AES algorithm, instead of using an XOR table like 
AES’s, we use two new XOR tables (A and B), which are used alternately in AES rounds. 
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The new XOR tables are generated from a given secret key and the original AES XOR 
table. The modified AES block cipher (also known as key-dependent DRAES block 
cipher) will be much more difficult than AES for cryptanalysis. In practice, the algorithm 
generating new XOR tables (Algorithm 1) can be public but the cryptanalysts do not 
know the secret key. Therefore, they can not know which XOR table used for AES. 
Furthermore, the alternatively use of new XOR tables for AES rounds also makes it much 
more difficult for cryptanalysts because they do not know which XOR table used for 
which round of AES. 

Another aspect is that the number of dynamic XOR tables generated by Algorithm 1 
is 16, which is not too large, but in practice it will make it much more difficult for 
cryptanalysts to collect many pairs of plaintexts and ciphertexts. Generally, if the 
cryptanalysts do the exploration by the exhaustive method, it is very difficult for them to 
do. Thus, it can be seen that the modified AES block cipher with new key-dependent 
XOR tables can improve the security of the AES block cipher. 

Compare our method with methods in Salih et al. (2019, 2020). 
Since our method is to generate dynamic XOR tables to animate the AES block 

cipher at the Addroundkey layer, so in this paper we only compare our method with those 
proposed in Salih et al. (2019, 2020). Other research directions focus on animating AES 
at the substitution and diffusion layers, so we will not compare them with our method in 
this paper. 
Table 9 Compare our method with methods in Salih et al. (2019, 2020) 

Criteria Our method Methods in Salih et al. (2019, 2020) 
Dynamic by key Yes Yes 
Number of new XOR 
tables created 

2 1 

Dynamic XOR table space 16 1 
Random bit generation 
algorithm 

Pseudo-random bit 
generator (more efficient) 

Chaotic mapping 

Necessary properties for 
the XOR table 

Fully indicated Incompletely indicated 

Security of modified AES 
algorithm 

More secure because 
dynamic XOR tablespace 

is larger 

The dynamic MDS matrix in Salih  
et al. (2019) is not an MDS matrix, 
the number of XOR tables is small, 
which may affect the security of the 

modified AES algorithm 

5.2 Evaluation of randomness via NIST two-level approach 

We have applied our procedure to evaluate the randomness of outputs of AES and the 
modified block cipher. The obtained results show that the modified block cipher achieve 
the output randomness equivalent to AES block cipher. Figure 3 shows the successful 
proportion of statistical tests by round for AES and the modified AES. Table 10 shows 
randomness assessment results for original AES. 
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Experimental results show that the original AES block cipher needs three rounds to 
achieve randomness for datasets AV1, HW, LW and two rounds to achieve randomness 
for dataset Rot. In summary, the AES block cipher requires three rounds to achieve 
randomness for the datasets considered in this paper. Table 11 presents the randomness 
assessment results for the modified AES. 

Figure 3 The successful proportion of statistical tests by round for AES and the modified AES 
(see online version for colours) 
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Figure 3 The successful proportion of statistical tests by round for AES and the modified AES 
(continued) (see online version for colours) 
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Table 10 Randomness assessment results for original AES 

No. of 
rounds Freq. test Runs test 

Test for 
longest 
run of 
ones 

Serial 
test 

AppEn. 
test 

CuSum. 
test 

Bit 
AutoCorr. 

test 

Byte 
AutoCorr. 

test 

AV1 input data 
1 0 0 0 0 0 0 0 0 
2 0 0 0.097352 0.018387 0.001756 0 0 0.000240 
3 0.674352 0.718134 0.543234 0.854342 0.938274 0.079594 0.833264 0.819625 
4 0.837992 0.780179 0.677498 0.520289 0.861955 0.660107 0.225586 0.515942 
5 0.311486 0.477947 0.361286 0.176993 0.831995 0.972854 0.685608 0.241037 
6 0.161481 0.277486 0.620682 0.444318 0.690645 0.067994 0.358080 0.987605 
7 0.691699 0.182190 0.878501 0.859037 0.749850 0.545242 0.142185 0.963018 
8 0.463798 0.573471 0.645756 0.833488 0.847496 0.814524 0.850207 0.751446 
9 0.554941 0.494566 0.595929 0.468640 0.519504 0.238870 0.294216 0.719405 
10 0.637994 0.085964 0.919557 0.073139 0.217203 0.664697 0.216509 0.246476 

HW input data 
1 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 
3 0.092147 0.376637 0.483114 0.468203 0.508598 0.047413 0.248938 0.650548 
4 0.187437 0.331880 0.430121 0.433326 0.371806 0.188852 0.399271 0.037653 
5 0.729675 0.688300 0.680246 0.513069 0.663646 0.073020 0.172822 0.943102 
6 0.909228 0.321444 0.081417 0.609881 0.810902 0.994181 0.417283 0.956882 
7 0.387684 0.458585 0.281717 0.064036 0.095100 0.990907 0.039058 0.120226 
8 0.429938 0.909851 0.535240 0.673103 0.283729 0.061184 0.599375 0.283946 
9 0.363365 0.130117 0.296703 0.219469 0.061937 0.354226 0.385171 0.825214 
10 0.703550 0.510023 0.195757 0.258551 0.052523 0.090337 0.691955 0.793155 
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Table 10 Randomness assessment results for original AES (continued) 

No. of 
rounds Freq. test Runs test 

Test for 
longest 
run of 
ones 

Serial 
test 

AppEn. 
test 

CuSum. 
test 

Bit 
AutoCorr. 

test 

Byte 
AutoCorr. 

test 

LW input data 
1 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 
3 0.283404 0.499057 0.062722 0.662772 0.710793 0.409956 0.285987 0.977911 
4 0.602345 0.242995 0.059947 0.622687 0.575576 0.338580 0.305306 0.066553 
5 0.227775 0.993694 0.618060 0.911933 0.911703 0.788742 0.782909 0.673211 
6 0.264241 0.521711 0.018088 0.000463 0.110097 0.023398 0.616281 0.860850 
7 0.291630 0.714159 0.039952 0.467268 0.351942 0.677446 0.796704 0.215079 
8 0.188269 0.399319 0.115799 0.908694 0.976455 0.078170 0.033836 0.062437 
9 0.980581 0.002436 0.281112 0.310044 0.144750 0.916318 0.551379 0.637450 
10 0.228045 0.364696 0.543255 0.033877 0.030543 0.420899 0.847672 0.097713 

Rot input data 
1 0 0.377923 0.000022 0 0 0 0.123395 0.725779 
2 0.200353 0.746394 0.584519 0.096069 0.086802 0.719978 0.740125 0.521973 
3 0.731760 0.761428 0.239517 0.661889 0.628289 0.364076 0.782763 0.664107 
4 0.174402 0.957485 0.632356 0.361589 0.087942 0.923035 0.561526 0.772368 
5 0.217767 0.846416 0.440244 0.647179 0.861486 0.222809 0.540009 0.962706 
6 0.948885 0.319307 0.717474 0.178828 0.150365 0.268130 0.739672 0.845436 
7 0.733056 0.515920 0.243853 0.504955 0.266844 0.546180 0.573704 0.409911 
8 0.724931 0.382191 0.917489 0.030084 0.582831 0.761451 0.741164 0.335243 
9 0.803725 0.069296 0.265447 0.267188 0.267692 0.900419 0.064927 0.552041 
10 0.773706 0.108572 0.186316 0.899298 0.888591 0.070233 0.958691 0.158013 

Table 11 Randomness assessment results for the modified AES 

No. of 
rounds Freq. test Runs test 

Test for 
longest 
run of 
ones 

Serial 
test 

AppEn. 
test 

CuSum. 
test 

Bit 
AutoCorr. 

test 

Byte 
Autocor. 

test 

AV1 input data 
1 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0.000022 0 
3 0.598894 0.018305 0.339122 0.114644 0.017900 0.401902 0.068564 0.783297 
4 0.543253 0.601551 0.597370 0.474953 0.471361 0.511647 0.962485 0.907979 
5 0.704804 0.098806 0.752760 0.019669 0.009143 0.770070 0.349626 0.745146 
6 0.590701 0.129585 0.685053 0.286265 0.313612 0.489214 0.106276 0.727202 
7 0.936945 0.023026 0.582644 0.416645 0.402667 0.176081 0.005053 0.302354 
8 0.128106 0.413249 0.187094 0.450533 0.667270 0.617485 0.098959 0.065653 
9 0.752848 0.202312 0.891466 0.449087 0.144161 0.583684 0.141038 0.861803 
10 0.528404 0.357128 0.749070 0.221138 0.430105 0.752828 0.624921 0.712713 
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Table 11 Randomness assessment results for the modified AES (continued) 

No. of 
rounds Freq. test Runs test 

Test for 
longest 
run of 
ones 

Serial 
test 

AppEn. 
test 

CuSum. 
test 

Bit 
AutoCorr. 

test 

Byte 
Autocor. 

test 

HW input data 
1 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 
3 0.174302 0.610036 0.605127 0.056554 0.048234 0.293482 0.270106 0.802985 
4 0.494330 0.879917 0.057344 0.520374 0.848626 0.588860 0.960304 0.760260 
5 0.233626 0.378885 0.837758 0.637098 0.344653 0.392646 0.048854 0.008479 
6 0.013096 0.003210 0.186732 0.106056 0.077918 0.018103 0.069971 0.083227 
7 0.150654 0.605880 0.316956 0.253551 0.158879 0.568887 0.281234 0.406410 
8 0.416360 0.868021 0.242318 0.926386 0.825539 0.869072 0.649840 0.644573 
9 0.018936 0.896625 0.644544 0.822869 0.779568 0.314417 0.486969 0.456262 
10 0.449559 0.000391 0.487652 0.525436 0.157062 0.336376 0.383195 0.889668 

LW input data 
1 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 
3 0.043039 0.883915 0.526806 0.679981 0.508092 0.262151 0.951689 0.677082 
4 0.884328 0.503495 0.475520 0.932677 0.929271 0.400384 0.892766 0.825893 
5 0.317119 0.818725 0.616227 0.182688 0.183484 0.050599 0.975772 0.353146 
6 0.849597 0.001014 0.084951 0.859124 0.189599 0.038893 0.759658 0.326692 
7 0.082559 0.191408 0.447837 0.014648 0.012876 0.479664 0.057522 0.011973 
8 0.247371 0.121516 0.716245 0.629854 0.905881 0.206362 0.135625 0.075361 
9 0.856573 0.172818 0.184829 0.802924 0.767476 0.650117 0.396199 0.474076 
10 0.306695 0.015107 0.049570 0.560368 0.326504 0.505363 0.105989 0.239043 

Rot input data 
1 0 0.652409 0 0.000011 0.000007 0.277951 0.049359 0.040243 
2 0.000167 0.000250 0.156069 0.133972 0.279440 0 0.764219 0.840597 
3 0.952683 0.742995 0.051011 0.980236 0.842737 0.094734 0.951273 0.859309 
4 0.492108 0.033846 0.238144 0.713371 0.830867 0.628785 0.767785 0.630855 
5 0.858886 0.807524 0.594868 0.263077 0.291826 0.111183 0.376281 0.114936 
6 0.303912 0.378293 0.567738 0.450278 0.429716 0.126456 0.479104 0.182860 
7 0.634938 0.104833 0.272378 0.010423 0.453412 0.707197 0.229118 0.961944 
8 0.589786 0.577970 0.340470 0.727833 0.669176 0.470889 0.233397 0.792162 
9 0.960757 0.203889 0.392777 0.767143 0.561793 0.315061 0.489857 0.997386 
10 0.379779 0.693256 0.006520 0.040628 0.026037 0.920812 0.386460 0.390020 

Experimental results show that the modified AES block cipher requires three rounds to 
achieve randomness for all four datasets AV1, HW, LW and Rot. Although modified 
AES requires one more round than original AES to achieve randomness for Rot dataset, 
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the overall result still requires three rounds equivalent to original AES to achieve 
randomness for all four datasets. 

6 Conclusions 

Studying of dynamic methods and techniques to increase the security of block ciphers in 
general and AES in particular is very important today due to the strong development of 
cryptanalysis as well as the variety of new attacks on block ciphers. The more different 
dynamic methods of block ciphers are available, the more candidates can be chosen to 
improve the security of the block ciphers against today’s strong attacks. In this paper,  
we have proposed a method to make the AES block cipher dynamic through new  
key-dependent XOR tables. We also propose a procedure to evaluate the randomness of 
the output of a block cipher and apply this procedure to evaluate the randomness of the 
modified AES block cipher. We also analyse the security of the modified AES block 
cipher and evaluate the randomness using NIST statistical criterion. The proposed 
method contributes to improve the security of the AES block cipher against many current 
strong attacks. 
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