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Abstract: We study the scarce production capacity allocation problem in
a decentralised decision-making environment. We focus on the design of
an auction mechanism for effective allocation of scarce capacity, without
private information. In our problem setting, the firm’s machine environment
is identical parallel machines, and each customer order must be processed
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but also on the customer orders’ time window constraints. Hence, we
propose an ascending auction with a discriminatory pricing scheme for
customers, to identify the real processing requirements of the customer orders
and resolve resource conflicts. In our auction, the winner determination
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1 Introduction

In many industries, firms adopt the make-to-order (MTO) strategy to fulfil orders with
unique processing requirements. It is not possible to allocate the scarce capacity to all
potential orders. Finding a solution for the allocation of scarce capacity to the right
orders requires consideration of all private information of the orders. However, in a
decentralised decision-making environment, the firm and customers share only limited
private information in order to serve their own interests. As a result, local considerations
will deteriorate global interests, and customers will have conflicting interests (Kutanoglu
and Wu, 1999).

In this study, the firm possesses identical parallel machines. At the beginning of
the planning horizon, the firm receives a set of customer orders, each with a release
time and a deadline. The firm must either process the order within the time window
constraint that be comprised of the release time and deadline, or reject the order;
on the other hand, when the price given by the firm for processing the order is too
high, the customer will decline processing. Operating in such an environment, we aim
to design a mechanism that effectively and efficiently allocates the scarce capacity
without considering all private information. Specifically, the mechanism should enable
self-interested participants to make decisions that advance collective goals without
knowing other private information, and the mechanism should be able to allocate the
capacity within a reasonable time.

To the best of our knowledge, the auction mechanism is a suitable method to allocate
scarce capacity in a decentralised decision-making environment (Wellman et al., 2001;
McAfee and McMillan, 1987). Hall and Liu (2013) suggest that an ascending auction
is more efficient and profitable than a sealed bid auction in production scheduling
problems. Henceforth, we design a multi-round ascending auction mechanism to allocate
scarce capacity to a number of competing customers. The main research work is as
follows.

First, we design an auction mechanism in which the firm sets the price with
discrimination for customers. In our discriminatory pricing scheme, we use

a the length and location of the order’s time window

b the flexibility of order processing relative to its time window to describe the
scarcity of the capacity.

The discriminate prices can assist the firm in distinguishing customers with different
processing requirements, and allocating the capacity effectively.

Second, the winner determination (WD) problem of the auction mechanism needs
to make simultaneous order selection and production scheduling decisions, which can
be modelled as an order acceptance and scheduling (OAS) problem in identical parallel
machines with time window constraints. A special case of the OAS problem on a single
machine where all orders have the same time window constraints is equivalent to the
Knapsack Problem. It is well known that the Knapsack Problem is an NP-complete
problem (Pinedo, 1995). So the WD problem is an NP-complete problem. We develop
a heuristic using the Lagrangian relaxation technique to solve the WD problem.

We structure the remainder of the paper as follows. Section 2 provides a literature
review of related research. Section 3 outlines a detailed description of our problem
setting. In Section 4, we present an auction mechanism to allocate the production
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capacity, and Section 5 outlines a computational study of the auction mechanism.
Finally, Section 6 presents concluding remarks and future research directions.

2 Literature review

2.1 Auction for resource allocation problems

With the application of auction theory in radio spectrum rights (Jackson, 1976), auction
theory, as a subfield of economics, has been attracting increasing research attention
on resource allocation problems over the past few decades. Spectrum allocation is
to regulate the use of the spectrum and divide it among various competing interests
and organisations. The spectrum allocation problems are similar to the problem we
consider, because of the scarcity and complementarity of resource. McMillan (1994,
1995), Cramton (2002), Kasbekar and Sarkar (2010) and Cramton and Ockenfels (2017)
describe auctions for spectrum allocation problem. Auction theory also has been applied
to many other fields, such as logistics services, electrical power and computational grids.
See for examples, Ledyard et al. (2002), Yang et al. (2019) and Zhang et al. (2019)
propose auction-based approaches for allocation of logistics services. Nicolaisen et al.
(2001) and Voss and Madlener (2017) study auctions for electrical power. Das and Grosu
(2005), Izakian et al. (2010) and Kaushik and Vidyarthi (2015, 2018) introduce the
auction methods for grid resource management. However, using an auction mechanism
to allocate production capacity differs from these studies in that it requires consideration
of the heterogeneity of customer orders and the time dimension of the resource.

A few papers put forward the auction mechanisms for production capacity allocation
problems. Wellman et al. (2001) consider the single machine capacity allocation problem
with several customers each with a single order. They design an auction mechanism that
uses time slots as market goods. Dewan and Joshi (2002) present an auction mechanism
for the distributed scheduling problem in a job shop environment. The objective of
their problem is to minimise earliness-tardiness penalties. They also introduce iterative
price adjustments to reduce resource conflict. Hall and Liu (2013) propose an ascending
auction mechanism for the allocation of the scarce single machine capacity among
competing customers, each with a single order. They use time blocks as market goods,
and apply flexibility to market goods design. Karabatı and Yalçın (2014) consider the
integrated pricing and single machine capacity allocation problem in a decentralised
decision-making environment. They propose an auction mechanism that takes the
finished products as market goods. Our work is an extension of the research of Hall
and Liu (2013), and it is different from the above studies in the following aspects. First,
the firm’s machine environment is identical parallel machines, which is common in the
industry, the above studies present the auction mechanism in one single machine and
job shop environment. Second, the customer orders in our study have time window
constraints, which also affect the resource scarcity. These characteristics promote us
to propose an auction mechanism with a new pricing scheme and an effective WD
algorithm.
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2.2 OAS problems

In our study, the firm’s WD problem is to make a profit maximisation decision on the
OAS problem in identical parallel machines with time window constraints. The OAS
problem is initiated by Slotnick and Morton (1996) and Ghosh (1997). To the best
of our knowledge, most studies consider the OAS problem on a single machine. For
examples, Slotnick and Morton (2001) present an optimal branch-and-bound procedure
for the OAS problem to minimise the weighted tardiness, which uses an integer
relaxation for bounding. Rom and Slotnick (2009) use a genetic algorithm to solve the
OAS problem with tardiness penalties. Oğuz et al. (2010) formulate a mixed integer
linear program (MILP) for the OAS problem with tardiness and deadline, they also
develop three heuristic algorithms to solve large-sized instances. Cesaret et al. (2012)
present a tabu search algorithm that solves the OAS problem with release times and
sequence-dependent setup times. Zhong et al. (2014) consider the OAS problem with
machine availability constraints and study the approximability of the model. Chaurasia
and Singh (2017) present two hybrid metaheuristic approaches for the OAS problem
with release times and sequence-dependent setup times.

Recently, the OAS problems in more complicated machine environments have
also been studied. Wang et al. (2013) study the OAS problem in a two-machine
flow shop, they formulate the problem as MILP models and develop a heuristic and
a branch-and-bound algorithm. Lei and Guo (2015) study the OAS problem in a
flow shop environment, they formulate the problem as a MILP model and develop a
parallel neighbourhood search algorithm. Esmaeilbeigi et al. (2016) consider the OAS
problem in a two-machine flow shop, they present two new MILP formulations and
develop several techniques to improve the formulations. Jiang et al. (2017) develop
two approximation algorithms for an OAS problem with batch delivery on parallel
machines. Naderi and Roshanaei (2020) study an OAS problem in identical parallel
machines, they formulate the problem as a new MILP model and propose a novel
branch-relax-and-check exact method for solving the model. In our problem setting, each
customer order has a time window constraint. It is therefore different from that of Jiang
et al. (2017) and Naderi and Roshanaei (2020), and their methods are not applicable.

3 Problem statement

We present the description of the problem setting as follows. The firm’s machine
environment is m identical parallel machines, and the planning horizon spans a time
period t = 1, 2, ..., T . The firm sets a reserve value v for each time slot [t− 1, t]. At
the beginning of the planning horizon, the firm receives a set of customer orders N =
{1, 2, ..., n}, where the release time, processing time, deadline and revenue of order
i(i ∈ N) are ri, pi, di, and ui, respectively. We assume that the release times, processing
times, and the deadlines of all orders are integers.

The firm maximises his profit by selling the capacity and holding any unallocated
capacity at its reserve value. Each customer maximises profit by purchasing capacity to
produce order, so as to get its revenue. Let αi be the unit price for purchasing capacity
to process order i. If order i can be processed after the release time ri and finished
before the deadline di on any machine, the customer will obtain a profit ui − αipi,
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and the firm will earn a profit αipi from order i. The firm’s profit is the profit of the
scheduled time slots plus the reserve value of the unscheduled time slots.

In decentralised decision-making environment, we assume that the processing
requirements and revenues of customer orders are private information. Hence, we cannot
make centralised decision of the capacity allocation problem. We design an auction
mechanism that solves the private information case in Section 4.

4 Auction mechanism

In this section, we design an auction mechanism by which the firm can effectively
allocate his capacity when the customers do not share all private information. The
challenges for the design of the auction mechanism include: How to pass the messages
between the firm and customers? How to guide the customers to transfer the messages
in a way that is beneficial to effective resource allocation? How to determine the final
schedule efficiently? For the first question, we propose auction protocols to define the
responsibilities of all participants. For the second problem, we propose a pricing scheme
as a dominant strategy for the customers to reveal their truthful processing requirements
in their bids. For the third problem, we propose a heuristic to solve the WD problem
using the Lagrangian relaxation technique.

4.1 Auction protocols

We propose a multi-round auction with increasing prices. The auctioneer is the firm, the
market good is defined as a combination of continuous time slots, and the bidders are
the customers who have orders to be processed. The auction protocols are described as
follows: in each round,

a the firm updates the price for each customer to increase its profit over previous
rounds

b all the customers are allowed to bid simultaneously to process orders and, the
processing requirements of the customer orders cannot be changed, once they are
confirmed at first round

c the firm determines which bids to admit, so as to maximise his profit from the
submitted bids

d if none of the customers submit a new bid, the auction is terminated.

The auction protocols a to d are explained as follows: protocol a implies that the
ask prices are ascending. In an ascending auction, keeping bidding until the ask price
reaches its real revenue is each customer’s dominant strategy. Compared with the
second-price sealed bid auction, the ascending auction can generate higher profit for
the firm. In protocol b, the processing requirements of each customer order include
the processing time and processing time window, which are exogenous variables of the
auction. Protocols c and d refer to Hall and Liu (2013). Protocol c is adopted because
the objective of the firm is to maximise his own profit. It is obvious that the ascending
auction will be terminated within a limited number of rounds. Compared with the fixed
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number of rounds, the firm can obtain higher profit by adopting the termination way in
protocol d.

In each round of the auction, the firm needs to solve the pricing problem and the WD
problem. Let k be the round index, αk = (αk

1 , α
k
2 , ..., α

k
n)

T be the firm’s unit time slot
price for customers in round k. Let Bk

i = (pi, ri, di, α
k
i ), i ∈ N be the bids submitted

by the customers in round k, where αk
i is the unit time slot price for customer i. Let

W k(i), i ∈ N be an indicator function that denotes whether or not customer i ’s bid is
a winning bid in round k. We now formally describe the auction mechanism.

Procedure auction

Step 0 Initialisation: Set w = 0, B0
i = 0, W 0(i) = 0, i ∈ N .

Step 1 Set the round counter k = k + 1. The firm solves the pricing problem to
update the price αk = (αk

1 , α
k
2 , ..., α

k
n) for customers (see Subsection 4.2).

Step 2 For customers i ∈ N , if W k−1(i) = 1, let Bk
i = Bk−1

i ; if W k−1(i) = 0,
customer i submits a new bid Bk

i = (pi, ri, di, α
k
i ).

Step 3 The firm gathers all bids and solves the WD problem to generate a temporary
schedule W k(i), i ∈ N in round k of the auction (see Subsection 4.3).

Step 4 If none of the customers submit a new bid, where Bk
i = Bk−1

i , i ∈ N . The
auction is terminated with the allocation W k(i), i ∈ N , else go to step 1.

4.2 Pricing problem

We characterise the pricing problem by two elements:

a there is price discrimination among customers

b in each round, the price is adaptive and depends on the rounds and progress of the
auction.

The goal of price updating is to resolve resource conflicts among customers. When the
demand exceeds supply, conflict arises. We denote the price for each customer i(i ∈ N)
in round k by αk

i . It is designed by two parts: current price and price increment.
We first define the current price for customer i(i ∈ N) in round k, denoted by ᾱk

i ,
based on the temporary schedule in round k − 1:

1 If there is no time slots within [ri, di] allocated in round k − 1, then ᾱk
i = v.

2 If there are some or all of the time slots within [ri, di] allocated in round k − 1,
then calculate ᾱk

i as the weighted average of the values of all time slots within
[ri, di], including the total bid prices of the allocated time slots and the total
reserve value of the unallocated time slots.

Assuming bids 1, 2, ..., ni are winning the time slots within [ri, di] at prices αk−1
1 , αk−1

2 ,
..., αk−1

ni
. The first and last bids may be partially processed within [ri, di]. Let p̄k−1

j (j =
n′
i1, ..., n

′
i2) be the length of the time slots within [ri, di] allocated to order j in round

k − 1. Let Ik−1
i be the idle times within [ri, di] in round k − 1.
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The expression of p̄k−1
j is described as follows:

p̄k−1
j =


min{pj , Ck−1

j − ri} if j = n′
i1

pj if j = 2, ..., n′
i2 − 1

pj −max{0, Ck−1
j − di} if j = n′

i2

where n′
i1, n′

i2 are the first and last bids in one of the machines, C
k−1
j (j = n′

i1, ..., n
′
i2)

is bid j’s completion time. The same calculation applies to the length of the time slots
within [ri, di] allocated to bids on the other machines.

Hence, the current price ᾱk
i is defined as follows:

ᾱk
i =

∑ni

h=1 α
k−1
h p̄k−1

h + Ik−1
i v

m(di − ri)
.

Second, we define the price increment for customer i(i ∈ N) in round k, denoted by
ϵki , based on the length and location of the bid’s time window:

1 If there is no time slots within [ri, di] are allocated in round k − 1, then

ϵki =
ρ1pi

m(di − ri)
,

2 If there are some or all of the time slots within [ri, di] allocated in round k − 1,
then

ϵki =
ρ1pi

m(di − ri)
+

ρ2
∑di

t=ri+1 D
k−1
t

m(di − ri)N
,

where ρ1 and ρ2 are price adjustment factors, they are pre-determined constants.
ρ1 adjusts the price according to the impact of order processing flexibility on
prices, and ρ2 adjusts the price according to the impact of resource conflicts on
prices. If they are set too large or too small, the auction may miss the optimal
solution or be low efficient. However, these two price adjustment factors should
be determined experimentally. Dk−1

t is the number of bids received in round
k − 1 that containing machine time slot t.

In our price increment function,

a We use the length and location of the order’s time window, and the flexibility of
order processing to define the impact on resource scarcity caused by potential
orders. The less flexibility of order processing, the greater the impact on resource
scarcity and the larger the price increment.

b We use the number of bids got in the last round to define the demand of these
time slots within the order’s time window. The more the demand, the greater the
conflicts over resources among customers and the larger the price increment.

As a result, the discriminatory-linear price in round k for customer i(i ∈ N) is described
as follows:

αk
i = max{αk−1

i + ξ, ᾱk
i + ϵki }. (1)
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where ξ is a minimal positive number to ensure that αk
i > αk−1

i .
In our pricing scheme, we see that the prices are increasing during the auction, if

the revenues of the customer orders are bounded, the auction is guaranteed to terminate,
and the final winners’ prices are closer to their true revenues. We also see that the price
at the first round for customer i(i ∈ N) is equal to v + ρ1pi

m(di−ri)
, which discriminates

based on his processing requirement. Hence, each customer’s dominant strategy is to
bid by his truthful processing requirement. The protocols of the auction describe that
the customers are not allowed to change their processing requirements in the subsequent
rounds. Thus, the customers will always bid by their truthful processing requirements,
which will significantly improve the effectiveness of the firm’s capacity allocation
problem.

4.3 WD problem

The WD problem at each round involves maximisation of the firm’s profit by selecting
the customer bids and scheduling the accepted bids to the identical parallel machines
for processing. The WD problem is NP-complete, we developed a fast heuristic that
applies the Lagrangian relaxation technique to solve large-sized instances of the problem
approximately. We first determine the subset of the accepted bids by the Lagrangian
relaxation method, and then generate a feasible allocation from these accepted bids.

4.3.1 Integer linear programming formulation

Without loss of generality, we assume that the bids are numbered in non-decreasing
order of their release times, with ties broken by the earliest deadline first. The objective
of the WD problem is to maximise the firm’s total profit which includes the profit of
the sold capacity and the total reserve value of the unsold capacity. Let binary decision
variables xit = 1 denote that bid i is accepted and completed at time t, otherwise, xit =
0, for i ∈ N and t = 1, 2, ..., T . We formulate the WD problem as an integer linear
programming model:

(ILP ) max
n∑

i=1

T∑
t=1

(αi − v)pixit +mvT (2)

subject to
n∑

i=1

min{t+pi−1,T}∑
s=max{ri+pi,t}

xis ≤ m, ∀1 ≤ t ≤ T (3)

T∑
t=1

xit ≤ 1, ∀i ∈ N (4)

ri+pi−1∑
t=1

xit = 0, ∀i ∈ N (5)

T∑
t=di+1

xit = 0, ∀i ∈ N (6)

xit ∈ {0, 1}, ∀i ∈ N, 1 ≤ t ≤ T (7)



An auction mechanism for capacity allocation 841

In ILP, function (2) denotes the profit of the sold capacity
∑n

i=1

∑T
t=1 αipixit plus

the total reserve value of the unsold capacity mvT −
∑n

i=1

∑T
t=1 vpixit. Constraint (3)

states that in each time slot, at most m bids can be processed simultaneously, because
of the limited capacity of the m machines. Constraint (4) states that the accepted bids
should be processed exactly once. Constraints (5) and (6) make sure that the accepted
bids are processed after their release times and completed before their deadlines,
respectively.

We identify a property of an optimal solution which will be used to develop
heuristic for the WD problem.

Lemma 4.1: For the WD problem, there is an optimal solution in which if at least one
bid of Ai is accepted and processed between its release time and deadline, then bid i
is also accepted for processing, where Ai = {j|rj ≥ ri, dj ≤ di, pj ≥ pi and uj < ui},
i ∈ N .

Proof: Let π∗ be an optimal solution for the WD problem. Suppose that bid i is not in
π∗, but bid j in set Ai is accepted and began at time t in π∗, where Ai = {j|rj ≥ ri,
dj ≤ di, pj ≥ pi and uj < ui}, i ∈ N , t ≥ rj and t+ pj ≤ dj . That means bid j is
processed between its release time and deadline. We replace bid j by bid i. Denote the
new schedule as π′.

In π′, the beginning time of bid i is t, we see that t ≥ rj and rj ≥ ri, so t ≥ ri, we
also see that t+ pj ≤ dj , dj ≤ di and pj ≥ pi, so t+ pi ≤ di. Hence, bid i can also be
produced between its release time and deadline in π′. As known uj < ui, so the profit
of π′ is greater than that of π∗. A contradiction arises. Hence, we reach the conclusion.

�

Lemma 4.1 implies that if an optimal solution includes bid j, it must include bid i.
However, if an optimal solution includes bid i, it may not include bid j.

4.3.2 Lagrangian relaxation

Let λ = (λ1, λ2, ..., λT )
T be a vector of the corresponding non-positive multipliers. The

Lagrangian relaxation problem of the WD problem is described as follows:

(LR) L(λ) = max
( n∑

i=1

T∑
t=1

(αi − v)pixit +mvT

+
T∑

t=1

λt

( n∑
i=1

min{t+pi−1,T}∑
s=max{ri+pi,t}

xis −m

))
subject to equations (4), (5), (6) and (7)

In (LR), we add constraint (3) to the objective function with weights λ =
(λ1, λ2, ..., λT )

T , and drop constraint (3). For any λ ≤ 0, L(λ) is no less than the
objective value of the WD problem. That means the value of L(λ), which depends on
λ, is an upper bound on the optimal value of the WD problem.

The Lagrangian relaxation problem (LR) can be rewritten equivalently as:
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(LR) L(λ) = max
( n∑

i=1

T∑
t=1

(
αipi − vpi +

t∑
s=max{t−pi+1,ri}

λs

)
xit

+m

(
vT −

T∑
t=1

λt

))
subject to equations (4), (5), (6) and (7)

For each bid i, let

Li(λ) =
T∑

t=1

(αipi − vpi +
t∑

s=max{t−pi+1,ri}

λs)xit.

Then

L(λ) = max
( n∑

i=1

Li(λ) +m

(
vT −

T∑
t=1

λt

))
.

Let ¯̄αt
i = (αi − v) and λ̄t

i =
∑t

s=max{t−pi+1,ri} λs, then

L(λ) =
n∑

i=1

max
ri+pi≤t≤di

(
Li( ¯̄α

t
ipi + λ̄t

i)

)
+m

(
vT −

T∑
t=1

λt

)
.

Thus, we consider the Lagrangian dual of (LR) as follows:

(D) LD = min
λ≤0

L(λ).

We use the subgradient algorithm to determine the Lagrange multipliers λ = (λ1, λ2,
..., λT )

T to find near-optimal or optimal solutions of LD:

Subgradient algorithm SA

Step 0 Initialisation: Set λ0 ≤ 0 and g = 0. Set the values of G, µ0 and γ.

Step 1 Calculate xg and Lg(λg) for the Lagrangian problem.

Step 2 Calculate λg+1 = λg + βgG(xg)/∥ G(xg) ∥, where βg is the step size and
G(xg) is the subgradient at point xg , where

G(xg) = (G1(x
g), G2(x

g), ..., GT (x
g))T ,

Gt(x
g) =

n∑
i=1

min{t+pi−1,T}∑
s=max{ri+pi,t}

xis −m, for t = 1, ..., T,

and

∥ G(xg) ∥=
√
G1(xg)

2
+G2(xg)

2
+ ...+GT (xg)

2
.

Step 3 Set g ← g + 1. If g < G, then perform step 2; otherwise, stop.
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In algorithm SA, the difficulty lies in how to choose the step size βg, we use the
following method to define it:

βg =
µg(Z̄ − Lg(λg))

∥ G(xg) ∥
,

where µg = γµg−1, Z̄ is a feasible solution value for the WD problem and Z̄ ≤ Lg(λg).
We use algorithm SA to get an upper bound for the WD problem, and the vector

xG shows whether the bids are accepted or not, in the Lagrangian dual problem.

4.3.3 Heuristic for the WD problem

We need to develop a heuristic based on the Lagrangian relaxation method, since vector
xG may not be the optimal solution or even a feasible solution of the WD problem.
First, we use xG as a preliminary solution of the winning bids, and then generate a
feasible schedule. We describe the heuristic as follows:

Heuristic algorithm HA

Step 0 Set Φ be the subset of accepted bids by algorithm SA and Φ′ = N \ Φ.
Index the bids in Φ in a non-decreasing order of the release times and break
ties by the earliest deadline first.

Step 1 For the bid i = 1, 2, ..., |Φ|, assign successively bid i to m identical parallel
machines by steps 1-1 or 1-2.

Step 1-1 If bid i can be started after ri and completed before di on one of
the machines, then schedule it to the machine on which bid i is
started as close to its release time as possible. Next i.

Step 1-2 If bid i cannot be started after ri or completed before di on any
machines, then discard it and let Φ′ = Φ′ ∪ {i}. Next i.

Step 2 Confirm whether there are idle times between adjacent bids on all the
machines. Successively select one bid s with αs = max{αi|i ∈ Φ′}. Insert
bid s in all the idle times. If bid s can be started after rs and completed
before ds in some idle times, then assign it such that it is started as close to
its release time as possible and let Φ′ = ¯̄N \ {s}.

Step 3 Check each bid l ∈ A′, calculate Al = {j|rj ≥ rl, dj ≤ dl, pj ≥ pl or
uj < ul, j ∈ N̄}. If Al = ⊘, then let Φ′ = Φ′ \ {l}.

Step 4 Successively select one bid w with αw = max{αi|i ∈ Φ′}. Insert the bid w
in time slot [rw, dw], and successively confirm one bid k after the order w. If
it is not in its processing window, then discard it and process the succeeding
bids in their processing windows as early as possible.

Step 5 Keep a record of the maximum objective value of the generated schedule in
step 4. Let Φ′ = Φ′ \ {w} ∪ {k}. If the maximum objective value is greater
than the objective value of the current schedule, this schedule is taken as the
current schedule.
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Step 6 Confirm whether Φ′ is an empty set. If Φ′ ̸= ⊘, then go to step 4; otherwise
stop.

In step 1 of algorithm HA, we generate a feasible schedule from the accepted bids.
In step 2, we add the unscheduled bids to the idle times of the identical parallel
machines. In step 3, we use Lemma 4.1 to assess whether the unscheduled bids can
be greedily added to the machines. In steps 4 and 5, we greedily add the unscheduled
bids to increase the firm’s profit. The computing cost of algorithm HA is dominated by
algorithm SA. Thus, the computational time of algorithm HA is O(nT ).

4.4 Special case

The global optimisation problem’s objective is maximising the system profit. The integer
linear program of the global optimal schedule can be readily obtained by changing
the objective function of the WD problem [see equation (2)] as max

∑n
i=1

∑T
t=1(ui −

vpi)xit +mvT . For general cases, the solution generated by the auction mechanism
may differ from the global optimal solution. Here, we consider a special case where
all customer orders have the same processing time p. It reflects the practical situation
in which assembling similar components according to different customer requirements.
The special case is denoted as the identical processing time problem. We consider a
simple example as follows:

Example 4.1: Consider an instance in which m = 2, T = 4. There are five customer
orders (see Table 1 for the order information). We set v = 1, ρ1 = ρ2 = 1.

Table 1 The data of the customer orders in Example 4.1

Order i pi ri di ui

1 2 0 2 10
2 2 0 3 7
3 2 0 4 4
4 2 1 3 8
5 2 2 4 6

The auction process is as follows:
In the first round, the firm sets the prices for each customer: α1

1 = 1.5, α1
2 = 1.33,

α1
3 = 1.25, α1

4 = 1.5 and α1
5 = 1.5. The customers submit bids B1

1 = (2, 0, 2, 1.5), B1
2

= (2, 0, 3, 1.33), B1
3 = (2, 0, 4, 1.25), B1

4 = (2, 1, 3, 1.5) and B1
5 = (2, 2, 4, 1.5). The

firm solves the WD problem, and customers 1, 2, 3, 5 win bids.
In the second round, the firm updates the price for customer 4: α2

4 = 2.295. Customer
4 submits a new bid B2

4 = (2, 1, 3, 2.295). The firm solves the WD problem and
customers 1, 4, 5 win bids.

In the third round, the firm updates the price for customers 2 and 3: α3
2 = 2.382, α3

3

= 2.149. The price is too high for customer 3, only customer 2 submit new bids B3
2 =

(2, 0, 3, 2.382). The firm solves the WD problem and customers 2, 4, 5 win bids.
The details of rounds 4 to 11 are omitted.



An auction mechanism for capacity allocation 845

In the 12th round, the firm updates the price for customer 2: α12
2 = 3.443. Customer

4 submits a new bid B12
2 = (2, 0, 3, 3.443). The firm solves the WD problem and

customers 1, 2, 5 win bids.
In the 13th round, the firm updates the price for customer 4: α13

4 = 3.08. Customer 4
submits a new bid B13

4 = (2, 1, 3, 3.08). The firm solves the WD problem and customer
1, 2, 5 win bids.

In the last round, no one submits a new bid. The auction is terminated, and
customers 1, 2, 5 win bids.

The system profit of the auction is 25. It is easy to show that the global optimal
schedule is customers 1, 2, 3, 5, and the global optimal value is 27.

Example 4.1 illustrates that the auction mechanism cannot guarantee a global
optimal solution for the special case. Next, we present a positive result under stronger
conditions.

Theorem 4.2: For the identical processing time problem, if all the customer orders have
the same time window constraint [r, d], then the system value of the auction mechanism
is less than the global optimal value by at most min{m⌊d−r

p ⌋, n−m⌊d−r
p ⌋}

(ρ1+ρ2)p
m .

Proof: According to the auction mechanism in Section 4, if all customer orders have
the same processing time p and the same time window [r, d], then in each round, price
increment ϵi and price αi are the same for the unaccepted customers.

There are a pool of customer orders N = {J1, J2, ..., Jn}, where u1 > u2 > ... >
un. Assuming there is a feasible solution, that A = {J1, J2, ..., Jm⌊ d−r

p ⌋} is a set
of the accepted customer orders, A′ = {Jm⌊ d−r

p ⌋+1, Jm⌊ d−r
p ⌋+2, ..., Jn} is the set of

the unaccepted customer orders, where min{uj |Jj ∈ A} > max{u′
i|J ′

i ∈ A′} , |A| =
m⌊d−r

p ⌋ and |A
′| = |N | − |A|. For the global problem, it is clear that there exists a

global optimal solution in which all orders in A are accepted for processing. Let F ∗ =∑
Jj∈A uj +mv(T − ⌊d−r

p ⌋p) denote the global optimal value.
For the auction mechanism, we consider the worst solution in two possible

situations:

1 When |A| ≤ |A′|, that means m⌊d−r
p ⌋ ≤ n−m⌊d−r

p ⌋.

In the K round, assuming thatαK ≤ min{uj/p|Jj ∈ A′} = un/p and
Jn−m⌊ d−r

p ⌋+1, ..., Jn are accepted for processing. It means all winning orders are
in A′. Then the firm updates the price αK+1 > max{uj/p|Jj ∈ A} = u1/p for
the unaccepted orders, where αK+1 = ᾱK+1 + ϵK+1, and ᾱK+1 ≥ αK . Thus,
none of the unaccepted orders can submit a new bid and the auction is terminated.
So part or all of orders in A′ are accepted for processing and the system value of
the auction mechanism is F =

∑n
Ji=n−m⌊ d−r

p ⌋+1 ui +mv(T − ⌊d−r
p ⌋p), then

F ∗ − F =
∑
Jj∈A

uj +mv

(
T −

⌊
d− r

p

⌋
p

)
−

( n∑
Ji=n−m⌊ d−r

p ⌋+1

ui

+ mv

(
T −

⌊
d− r

p

⌋
p

))
= u1 + u2 + ...+ um⌊ d−r

p ⌋ − (un−m⌊ d−r
p ⌋+1 + un−m⌊ d−r

p ⌋+2 + ...+ un)
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= (u1 − un) + (u2 − un−1) + ...+ (um⌊ d−r
p ⌋ − un−m⌊ d−r

p ⌋+1)

< m

⌊
d− r

p

⌋
(αK+1 − αK)p ≤ m

⌊
d− r

p

⌋
ϵK+1p,

from Subsection 4.2, we see that

ϵK+1 =
ρ1p

m(d− r)
+

ρ2
∑d

t=r+1 D
K
t

m(d− r)N

≤ ρ1
m

+
ρ2
m

=
ρ1 + ρ2

m
,

thus, we have

F ∗ − F <

⌊
d− r

p

⌋
(ρ1 + ρ2)p.

2 When |A| > |A′|, that means m⌊d−r
p ⌋ > n−m⌊d−r

p ⌋.

In the K round, assuming that Jn−m⌊ d−r
p ⌋+1, ..., Jn are accepted for processing. It

means all orders in A′ and part of orders in A win. Then the firm updates the
price αK+1 = ᾱK+1 + ϵK+1 > max{uj/p|Jj ∈ A} for the unaccepted orders.
Thus, none of the unaccepted orders can submit a new bid and the auction is
terminated. So all orders in A′ and part of orders in A are accepted for
processing, similar to 1, we have

F ∗ − F =
∑
Jj∈A

uj +mv

(
T −

⌊
d− r

p

⌋
p

)
−

( n∑
Ji=n−m⌊ d−r

p ⌋+1

ui

+ mv

(
T −

⌊
d− r

p

⌋
p

))
= u1 + u2 + ...+ um⌊ d−r

p ⌋ − (un−m⌊ d−r
p ⌋+1 + un−m⌊ d−r

p ⌋+2 + ...+ un)

= (u1 − un) + (u2 − un−1) + ...+ (un−m⌊ d−r
p ⌋ − um⌊ d−r

p ⌋+1)

<

(
n−m

⌊
d− r

p

⌋)
(αK+1 − αK)p ≤

(
n−m

⌊
d− r

p

⌋)
ϵK+1p

≤
(
n−m

⌊
d− r

p

⌋)
(ρ1 + ρ2)p

m
.

Summarising the analysis of situations 1 and 2, we conclude that the system value of the
auction mechanism is less than the global optimal value by at most min{m⌊d−r

p ⌋, n−
m⌊d−r

p ⌋}
(ρ1+ρ2)p

m . �

5 Computational analysis

In this section, we present a computational analysis of the effectiveness and efficiency
for the auction mechanism. All instances are solved on a PC computer with 2.9 GHz
octa-core processor and 16 GB RAM.
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5.1 Data generation

We first select m ∈ {2, 5, 10}, n ∈ {25, 50, 100}. For order i(i ∈ N), the processing
times, release time, deadline, and revenue are integer numbers. We generate pi randomly
from a uniform distribution in the interval [1, 100], ui randomly from a uniform
distribution in the interval [piv, 1,000]. We define the relative range factor parameters
of release time R and deadline D. The values for R are 0.2, 0.4, 0.6 and the values for
D are 0.6, 0.8, 1.0. This reflects a wide range of changes in the length and location of
the time window for each customer order. For fixed values of R and D, we generate
the release time ri randomly from a uniform distribution in the interval [0,min{T −
pi, RT}], and the deadline di randomly from a uniform distribution in the interval
[ri + pi,max{ri + pi, DT}]. Let P =

∑
i∈N pi. For each instance with total processing

time P , the firm’s capacity T is generated using T = τP/2, where τ ∈ {0.5, 0.7, 0.9}.
We generate the reserve value v randomly from a uniform distribution in the interval
[1, 10]. For each of the 3 × 3 × 3 × 3 × 3 = 243 situations, we randomly generate 10
problem instances. Thus, we generate 2,430 problem instances.

5.2 Analysis of the performance of algorithm HA

In this subsection, we choose m = 2, n ∈ {25, 50, 100} to analyse the influence of
the changes of the parameters on the performance of the algorithm HA. Before the
analysis of the performance of algorithm HA, we use a simple instance to illustrate that
algorithm HA is well implemented.

Example 5.1: Consider an instance in which m = 2, T = 16. There are eight bids Bi =
(pi, ri, di, αi), (i = 1, ..., 8) (see Table 2 for the information of the bids). We set v =
1.

We solve the ILP model of the WD problem by CPLEX, and get an optimal solution,
B1, B2, B4, B5, B6 are allocated time slots [4, 10], [1, 3], [9, 14], [1, 8] and [11, 12],
respectively. The firm achieves a total profit of 334.

According to algorithm HA, we first use algorithm SA to get a preliminary result of
the decision on bids selection. Set λ0 = (−1, ...,−1), µ0 = 1, γ = 1. After 16 iterations,
we get a bids selection solution B1, B2, B4, B5, B6. The solutions of the iterations are
shown in Table 3. Then, we generate a feasible schedule for the accepted bids B1, B2,
B4, B5, B6. Finally, we get a solution where B1, B2, B4, B5, B6 are allocated time
slots [4, 10], [1, 3], [9, 14], [1, 8] and [11, 12], respectively. The firm achieves a total
profit of 334. The solution is the same as the optimal solution.

Table 2 The information of the bids in Example 5.1

Bi 1 2 3 4 5 6 7 8

pi 7 3 10 6 8 2 6 5
ri 2 0 2 3 0 1 1 2
di 11 10 15 14 9 13 12 11
αipi 59 81 46 83 53 52 22 18

Since using the integer linear program of the WD problem can not be solved in a
reasonable time, we establish its upper bound by using the Lagrangian relaxation method
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that is presented in Subsection 4.3.2. To evaluate the performance of algorithm HA, we
compare its solution value with the optimal solution value or upper bound.

Table 3 The solutions for iterations of SA in Example 5.1

g Accepted bids Lg(λg)

1 B1, B2, B3, B4, B5, B6, B7, B8 384.0
2 B1, B2, B3, B4, B5, B6, B7, B8 381.1
3 B1, B2, B3, B4, B5, B6, B7, B8 361.4
4 B1, B2, B3, B4, B5, B6 349.9
5 B1, B2, B4, B5, B6 341.3
6 B1, B2, B3, B4, B5, B6 331.4
7 B1, B2, B4, B5, B6 339.8
8 B1, B2, B4, B5, B6 336.5
9 B1, B2, B4, B5, B6 336.6
10 B1, B2, B4, B5, B6 337.4
11 B1, B2, B4, B5, B6 336.1
12 B1, B2, B3, B4, B5, B6 334.1
13 B1, B2, B4, B5, B6 337.4
14 B1, B2, B4, B5, B6 334.9
15 B1, B2, B4, B5, B6 334.2
16 B1, B2, B4, B5, B6 334.0

Table 4 Performance of algorithm HA with m = 2, n = 25

τ R D POH(%) (n = 25) POU(%) (n = 25)
Max Min Average Max Min Average

0.5 0.2 0.6 99.42 87.62 93.88 108.13 100.85 102.74
0.8 96.21 89.56 92.95 104.74 100.55 102.19
1.0 96.17 88.49 92.58 104.48 101.04 102.21

0.4 0.6 100.00 88.86 94.94 106.93 100.17 102.20
0.8 95.63 89.71 93.95 106.91 101.19 102.80
1.0 100.00 88.77 93.56 105.29 101.15 102.72

0.6 0.6 100.00 88.52 94.52 107.52 101.08 103.19
0.8 99.52 90.31 94.34 105.31 100.47 102.41
1.0 99.43 90.20 93.98 104.06 101.28 102.15

0.7 0.2 0.6 96.94 90.84 94.39 107.07 100.53 102.17
0.8 96.26 88.30 93.69 103.28 100.63 101.78
1.0 96.49 90.85 95.06 105.23 101.46 102.77

0.4 0.6 99.35 91.38 95.92 104.52 100.89 102.22
0.8 96.11 88.11 94.29 104.36 100.83 102.13
1.0 96.38 90.81 94.02 102.61 100.85 101.78

0.6 0.6 100.00 91.04 96.46 107.92 100.58 103.47
0.8 96.89 91.97 94.73 104.20 100.48 102.41
1.0 99.37 91.34 95.97 102.77 101.49 102.11

0.9 0.2 0.6 97.52 88.86 96.83 104.23 100.88 102.26
0.8 97.38 88.51 94.58 103.92 101.08 102.00
1.0 98.89 92.63 95.53 102.84 100.64 101.50

0.4 0.6 99.33 93.36 96.86 104.89 100.84 102.16
0.8 100.00 91.04 95.64 102.94 101.37 101.92
1.0 99.12 94.00 97.91 102.90 100.63 101.64

0.6 0.6 99.89 92.57 97.24 106.33 101.13 102.46
0.8 98.00 90.23 96.76 116.85 101.29 102.88
1.0 97.60 91.14 95.97 102.88 100.43 101.90

Average 95.06 102.30
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Let Hf−val denote the objective value obtained by algorithm HA. Let OPTf and
UBf−relax denote the optimal value by IPL model and the objective value obtained
by the Lagrangian relaxation method, respectively. For the case where n = 25,
the performance of algorithm HA is defined as POH = Hf−val/OPTf , and the
performance of the upper bound is defined as POU = UBf−relax/OPTf . For the
cases where n = 50 and 100, the performance of algorithm HA is defined as POH =
Hf−val/UBf−relax since the optimal solution can not be obtained within reasonable
computational time. The experimental results are displayed in Tables 4 and 5.

Table 5 Performance of algorithm HA with m = 2, n ∈ {50, 100}

τ R D POH(%) (n = 50) POH(%) (n = 100)

Max Min Average Max Min Average

0.5 0.2 0.6 92.94 85.25 90.25 92.44 86.91 89.87
0.8 91.91 83.21 89.94 90.40 85.10 88.16
1.0 90.55 84.30 88.88 89.96 82.96 87.70

0.4 0.6 95.77 88.46 92.52 96.00 88.31 92.78
0.8 93.74 87.81 90.32 93.21 87.22 90.61
1.0 93.26 85.08 89.73 90.79 84.65 89.34

0.6 0.6 94.74 89.35 95.50 96.29 93.02 94.44
0.8 93.69 88.13 93.49 92.84 90.04 93.36
1.0 92.49 87.37 92.25 92.27 88.34 91.37

0.7 0.2 0.6 93.02 87.41 90.64 91.50 86.63 90.62
0.8 94.20 87.11 90.58 92.28 84.27 90.05
1.0 93.53 86.76 92.79 91.94 85.76 89.83

0.4 0.6 93.56 89.87 92.91 94.81 88.32 92.85
0.8 92.97 86.42 91.89 93.31 87.60 91.52
1.0 93.75 88.39 91.32 93.35 85.03 90.59

0.6 0.6 94.92 91.68 95.91 95.67 92.58 94.34
0.8 94.24 90.86 93.73 96.19 90.14 93.35
1.0 93.89 88.12 92.89 95.78 89.78 93.91

0.9 0.2 0.6 94.84 89.67 93.90 91.39 85.94 92.63
0.8 92.26 88.62 92.79 93.08 84.77 92.13
1.0 96.39 92.37 93.98 93.91 85.04 91.42

0.4 0.6 96.29 89.52 94.94 93.74 90.62 93.42
0.8 95.13 89.95 94.99 94.26 88.17 92.93
1.0 97.16 94.28 95.45 93.86 89.42 92.95

0.6 0.6 98.42 91.87 95.98 95.93 92.42 94.18
0.8 96.66 92.10 95.69 96.14 90.91 93.29
1.0 97.56 93.51 95.67 95.51 92.62 93.91

Average 92.98 91.91

For the instances with n = 25 shown in Table 4, the overall mean value of POU is
102.3%. This suggests that the upper bounds found by the Lagrangian relaxation method
are typically close to optimal values.

From Tables 4 and 5, we also see that the overall mean values of POH for the
case where n = 25, 50 and 100 are 95.06%, 92.98%, and 91.91%, respectively. The
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heuristic algorithm for the WD problem performs well across different combinations of
parameters. However, we see that the values of POH for the large problem sizes, where
n = 50 and 100, are significantly smaller than the value of the small-sized instances,
where n = 25. This follows as POH may be underestimated due to the gaps between the
upper bounds and the optimal objective values. We also see that algorithm HA performs
slightly better for larger values of the factor for release times, and for smaller values of
the factor for deadlines. Through the above analysis, we conclude that algorithm HA is
effective for rapidly finding a good solution of the WD problem.

5.3 Analysis of the performance of the auction mechanism

In this subsection, we investigate the effectiveness and efficiency of the auction
mechanism. First, we use the global optimal solution as a benchmark, and analysed the
effectiveness of the auction mechanism by comparing the system profit of the auction
mechanism to the benchmark solution. Since the global optimal solution can not be
solved in a reasonable time by CPLEX for the large-sized instance. We establish an
upper bound on the global optimal value by using the Lagrangian relaxation method
presented in Subsection 4.3.2.

Let Hauc denote the objective value of the auction mechanism. Let OPTs and
UBs−relax denote the global optimal value and the upper bound obtained by Lagrangian
relaxation method, respectively. For the case where m = 2, 5 and 10, n = 25, the
effectiveness of the auction mechanism is defined as POA = Hauc/OPTs. For the
other cases where m = 2, 5 and 10, n = 50 and 100, the effectiveness of the auction
mechanism is defined as POA = Hauc/UBs−relax, as the global optimal value can not
be obtained within reasonable computational times. The computational results with m =
2, 5 and 10, n = 25, 50 and 100 are summarised in Table 6.

Table 6 Performance of the auction mechanism with m ∈ {2, 5, 10}, n ∈ {25, 50, 100}

m n POA(%)

Max Min Average

2 25 100.00 86.59 94.00
50 97.25 85.02 91.93
100 96.47 83.09 91.03

5 25 100.00 88.42 95.36
50 98.75 83.90 92.17
100 95.49 82.58 91.52

10 25 100.00 89.92 96.28
50 97.58 84.36 92.37
100 97.01 82.92 92.54

Average 93.02

From Table 6, we see that the overall mean value of POA is 93.02%. When n = 25,
m = 2, 5, and 10, the auction mechanism can sometimes achieve the global optimal
value. The minimum value of POA can reach more than 80%. The auction mechanism
performs well with different numbers of machines.
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In Table 7, we choose m = 2, n ∈ {25, 50, 100} to analyse the influence of the
changes of the parameters on the performance of the auction mechanism. The detailed
results are summarised in Table 7.

Table 7 Performance of the auction mechanism with m = 2, n ∈ {25, 50, 100}

τ R D POA(%) (n = 25) POA(%) (n = 50) POA(%) (n = 100)
Max Min Average Max Min Average Max Min Average

0.5 0.2 0.6 97.43 89.79 93.93 93.26 86.80 90.66 90.88 86.58 89.88
0.8 96.90 89.16 93.12 92.45 86.27 90.28 89.36 83.99 88.45
1.0 96.25 90.02 92.36 92.55 85.02 89.84 90.06 83.09 87.56

0.4 0.6 100.00 91.03 93.74 94.75 88.39 92.58 95.24 86.97 90.61
0.8 95.37 88.16 92.94 92.65 87.50 90.61 91.88 88.04 89.96
1.0 98.17 87.33 92.27 93.51 87.63 90.39 93.15 84.55 87.74

0.6 0.6 98.77 90.27 95.05 97.25 89.79 92.72 94.96 89.88 92.33
0.8 98.28 92.12 94.53 93.30 89.98 91.70 93.77 89.56 91.89
1.0 97.10 86.59 93.66 94.92 85.86 91.57 92.52 88.54 90.29

0.7 0.2 0.6 97.86 90.80 93.97 91.96 85.35 90.20 91.63 86.21 89.96
0.8 94.83 88.34 92.82 93.72 86.96 90.97 92.80 83.66 88.69
1.0 98.24 87.43 92.49 94.56 86.35 90.57 95.12 83.45 90.84

0.4 0.6 98.55 91.21 95.15 95.45 89.83 92.47 94.79 87.53 90.69
0.8 97.84 87.72 93.82 94.34 87.41 91.68 92.92 88.17 90.55
1.0 96.35 87.35 92.59 93.80 86.88 91.26 94.66 86.94 90.19

0.6 0.6 97.58 88.55 94.45 95.33 90.06 92.67 94.94 88.47 92.44
0.8 98.80 88.19 94.86 95.88 88.44 91.82 94.72 88.37 91.96
1.0 98.38 89.97 93.84 94.96 90.30 92.68 94.38 87.20 91.43

0.9 0.2 0.6 96.27 90.51 95.04 94.91 88.06 91.59 92.84 85.23 91.56
0.8 97.31 88.52 94.42 93.26 85.22 91.82 93.89 85.74 90.99
1.0 97.66 89.60 93.62 95.02 87.42 90.98 94.82 84.72 91.59

0.4 0.6 99.09 92.10 95.27 93.66 90.57 93.28 93.51 89.64 92.76
0.8 97.19 90.79 94.32 95.64 88.61 93.56 95.10 86.48 91.86
1.0 97.96 88.23 93.34 95.11 90.86 93.14 96.47 86.77 92.17

0.6 0.6 100.00 92.61 95.97 96.40 92.38 94.97 95.39 91.05 93.93
0.8 97.15 90.42 95.06 94.50 89.83 92.98 95.18 90.09 92.62
1.0 97.70 90.07 95.44 96.94 91.66 93.91 96.47 90.97 93.91

Average 94.00 91.93 91.03

From Table 7, we see that the values of POA vary for situations associated with
different combinations of parameters. The detailed analysis is as follows. First, when n
= 25, 50 and 100, the overall mean values of POA are 94.00%, 91.93%, and 91.03%,
respectively. The auction mechanism performs worse as the number of customers
increases. Second, as the firm’s capacity parameter τ increases from 0.5 to 0.9, the
auction mechanism performs slightly better. This indicates that the smaller the scarcity
of capacity, the better the performance of the auction mechanism. Third, as the relative
range factor of release time R increases from 0.2 to 0.6, the auction mechanism performs
slightly better. As the relative range factor of deadline D increases from 0.6 to 1.0,
the auction mechanism performs slightly worse. This indicates that the length and



852 Q. Zhu and X. Wang

location of an order’s time window and the flexibility of order processing relative to its
time window affect the scarcity of the production resources, which in turn affects the
performance of the auction mechanism.

Figure 1 Number of rounds and system value of auction with m = 2, n ∈ {25, 50, 100},
(a) m = 2, n = 25 (b) m = 2, n = 50 (c) m = 2, n = 100 (see online version
for colours)

(a)

(b)

(c)

We also take m = 2, n ∈ {25, 50, 100} as examples, and use the mean number of
rounds in which the auction reaches closure to test the computational efficiency of the
auction mechanism. The number of rounds is mainly affected by the price adjustment
factors. We construct the situations with nine different pairs of price adjustment factors
(ρ1, ρ2). For each situation, we generate 20 problem instances. We calculate the number
of rounds and the system value Hauc with different pairs of price adjustment factors
(ρ1, ρ2). The results are presented in Figure 1.
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From Figure 1, the mean numbers of rounds of the three problem sizes where n =
25, 50, and 100 are 24.5, 34.0, and 43.7, respectively. The mean numbers of rounds
to reach closure for these nine different price adjustment factors are 43.2, 39.9, 32.6,
38.8, 34.3, 27.7, 33.8, 31.5, and 24.9, respectively. We observe that the price adjustment
factors (ρ1, ρ2) significantly impact the system value and the number of rounds to reach
closure. For fixed values of ρ1(ρ2), when ρ2(ρ1) increases from 0.5 to 1.5, the auction
requires fewer rounds to reach closure. From Figure 1, the price adjustment factors
(ρ1, ρ2) for which the system value reaches the highest of these three problem sizes
where n = 25, 50, and 100 is (1, 1), (1.5, 1), and (1.5, 0.5), respectively. However,
there is no clear relationship between the system value and the number of rounds. It
may result from the combination optimisation characteristics of the allocation of scarce
production capacity. It indicates that the suitable price adjustment factors (ρ1, ρ2) are
important, which directly affect the system value of the auction mechanism. Hence, in
order to obtain a better solution of the auction mechanism, it is necessary to select the
suitable adjustment factors through a large number of experiments.

6 Conclusions

We consider the scarce production capacity allocation problem in a decentralised
decision-making environment through an ascending auction mechanism. In this study,
we consider the firm to possess identical parallel machines, which is different from
the literature where the machine environment is a single machine or job shop. On the
other hand, we assume the customer orders have time window constraints, because,
in many situations, the customer orders can not be processed at the beginning of the
production horizon. To the best of our knowledge, our study is the first to use an auction
mechanism to allocate the production capacity in identical parallel machines with time
window constraints.

We propose a discriminatory pricing scheme to resolve the resource conflicts
and allocate the capacity effectively. A heuristic based on the Lagrangian relaxation
technique is introduced to solve the WD problem. Our computational study shows that
the heuristic for the WD problem is effective to find good solutions rapidly. The auction
mechanism performs well, on average, it provides more than 93% of the global optimal
value.

Future work can be directed to using the ascending auction mechanisms to allocate
production capacity in more complex machine environments. Another major research
direction is to extend the models in this study to the case where the capacity comes from
several competing firms. In that case, a double auction mechanism would be designed
to allocate the capacity from several firms to several customer orders.
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