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Abstract: Requirements engineering begins with discovery at the outset of project acquisition. 
Documents typically used during this phase include statements of works (SOWs) and requests for 
proposals (RFPs). One of the first challenges of a systems engineer is to carefully classify 
requirements into appropriate bins for further processing. This manual process, fundamental to 
understanding stakeholder needs and architecting and designing the system(s) of interest, is often 
tedious, particularly for large projects that start out with thousands of requirements embedded in 
these documents, making the task ripe for automation. For this research, we investigate multiple 
combinations of algorithms and meta-algorithms to glean insight as to how well they perform on 
this aspect of one of the more mundane aspects of requirements engineering. We obtain, by 
running various training corpora representing multiple industries through our pipelines of  
(meta-)algorithms, some understanding of what works best and what and how they could be 
improved. 
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1 Introduction 
Requirements engineering (RE), the discipline within 
systems engineering dealing with the development, analysis, 
and management of requirements that define a system at 
successive levels of abstraction (Dick et al., 2017), can be 
laborious. One of the most tedious aspects of this area 
commences at the onset of the project, or even before, with 
the contractor’s receipt of a requests for proposal (RFP) or 
statement of work (SOW) [Sainani et al. (2020) for 

example, report experts classifying a mean of 17 
requirements per hour by hand]. While small projects may 
consist of only a few top-level requirements, large 
enterprise-scale endeavours such as a public transportation 
system or a new communications infrastructure for the US 
Navy’s fleet may have thousands. According to Jones 
(2000), requirements development alone constitute 7.0% of 
a project’s cost for commercial projects and 10% for 
military software, translating to 22.7 and 17.5  
person-months in requirements development, respectively. 
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One such tedium in RE is the classifying of 
requirements, which is particularly important in the 
beginning, for various reasons. Various ways of classifying 
have been proposed and used for diverse applications: 

1 Classification by contract obligations, whether 
governance or architectural (Sainani et al., 2020). 

2 Classification by hierarchy or detail (INCOSE, 2015). 

3 Classification by functionality or non-functionality 
(Glinz, 2020). 

4 Classification by types (functional, performance, design 
constraints, quality attributes) (Hefner, 2019). 

5 Classification by quality attribute and expertise needed 
(cybersecurity, reliability, etc.) (Clements et al., 2003; 
Rozanski and Woods, 2011). 

6 Classification by importance or urgency (Dick et al., 
2017). 

The systems engineering ‘Vee’ model, regarded as the 
standard process for systems engineering (INCOSE, 2017), 
starts out on the left side to address requirements 
decomposition starting from stakeholder needs and 
requirements. This paper describes, via machine learning 
and meta-algorithmic patterns, one of the Vee model’s 
earliest needs for organisation by taking as input,  
customer-provided SOWs written in natural language and 
classifying requirements as governance or system 
requirements, similar to #1 above. We, however, did not 
want to separate between contract obligations into 
governance and architectural, because architecture has a 
narrower meaning (Rozanski and Woods, 2011) in the 
context of a solution. Design constraints and functional 
requirements (FRs) need to also be considered. As such, we 
opted to separate statements into the following: 

1 systems requirements, those that are levied on the 
system being developed and delivered, including FRs 
and non-functional requirements (NFRs) (constraints, 
performance, and quality attributes) 

2 governance requirements, which are requirements that 
are not system requirements, and instead are those that 
are levied on the project team and other support, and 
includes project delivery, compliance, execution, 
training, operation, maintenance, and other services. 

This separation is often necessary so that the project 
management and support teams can focus on the support 
activities and the engineering team and focus on the 
technical areas. Such a dichotomy is often not cut and dried, 
however, as we will see, as some requirements straddle the 
line. Requirements such as “the contractor shall produce the 
information model of the system and its components” are 
indeed levied on the contractor yet are targeted towards the 
engineering team; and “the contractor shall implement a 
zero-trust architecture” appears to be levied on the 
contractor but actually describes a constraint requirement 
levied on the system. The training corpora reflect the binary 

classification bins as two documents are used – a document 
that is purely programmatic (such as a performance work 
statement, or PWS) and a document that describes a system 
(DAU, n.d.), such as a specification. 

For the purposes of this research, we adhere to standard 
contract language (Black’s Law Dictionary Free Online 
Legal Dictionary, n.d.) and universally accepted convention 
that requirements are identified to have the imperative 
‘shall’ following the subject (INCOSE, 2015; DAU, n.d.; 
Douglass, 2016; Anon., 2018; NASA, n.d.), loosely of the 
form “<subject> shall <action verb clause> <object clause> 
<optional qualifying clause>.” Some examples include “the 
vendor shall provide a monthly-updated integrated master 
schedule within 30 days of award date”, “the system shall 
be accessible as per the Americans with Disabilities Act 
(ADA)”, and “the contractor shall utilise model-based 
systems engineering (MBSE) principles.” With the 
convention, we distinguish requirements from needs, which 
are typically not written in the ‘shall’ structure. Capabilities, 
operational and mission threads, needs, use cases, and user 
stories may be used to derive requirements but do not 
qualify as requirements themselves. A formal conversion to 
the ‘shall’ structure is necessary not only for consistency 
with a standard form, but also to vet the stakeholders’ wants 
and expectations (INCOSE, 2022). 

2 Related work 
In recent years, some work has been done in classifying 
requirements using machine learning techniques, though 
many have focused on software engineering projects. There 
is notable work on the subject: 

Sainani et al. (2020) started with 20 software contracts, 
extracted obligations (requirements) from them, and 
classified those obligations using Naïve Bayes, random 
forest, and support machine vectors (SVMs), as well as 
using a bidirectional long-short-term memory (BiLSTM) 
deep learning method and Google’s BERT for comparison. 
Similarly, Canedo and Mendes (2020) studied multiple 
algorithms [logistic regression (LR), SVMs, multinomial 
Naïve Bayes (MNB), and k-nearest neighbours (kNN)] for 
their accuracy and precision for classifying. Earlier work by 
Mahmoud and Williams (2016) used word similarity and 
clustering techniques. 

Abad et al. (2017) looked at software requirements from 
software requirements specifications (SRSs) and classified 
them into FRs and NFRs. They investigated the effect of 
pre-processing the dataset by applying grammatical, 
temporal, and sentimental characteristics of sentences using 
parts of speech (POS) tagging to standardise the dataset 
requirements for simpler processing. Finally, they classified 
NFRs into quality attributes using multiple algorithms, with 
Naïve Bayes taking the trophy. 

Sabir et al. (2020) tackle misclassification of NFRs by 
assigning multiple tags to requirements with the premise 
that requirements often straddle a grey area when it comes 
to correctly categorising them. 
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Giannakopoulou et al. (2020) describe FRETISH and 
Lucio et al. (2017) describe EARS, structured natural 
languages for formally writing requirements, useful for 
reducing conflicting interpretations and improving analysis. 

Besides the work by Sainani et al. however, not a lot has 
been conducted on ingesting raw SOW data and splitting 
them into a set that needs to be consumed by project 
management and a set that needs to be consumed by the 
systems engineering and technical team. The work led by 
Sainani focused on investigating software (not complex 
systems) contracts. What they considered as architectural 
contract obligations were somewhat limited to architectural 
constructs specific to software. Complex systems, on the 
other hand, are a generalised collection of interconnected 
and interrelated parts, and add another dimension beyond 
bits and bytes (Ladyman and Wiesner, 2020). Contractual 
obligations for software projects as these systems typically 
include uniquely include physical quality attributes such as 
reliability and availability, and constraints such as size, 
weight, and power (SWaP) (Kossiakoff et al., 2011). 

3 Context and research goals 
3.1 Context 
The general research area is deemed a natural application of 
machine learning and automation (Kotonya and 
Sommerville, 1998), as the vast majority of RFPs and 
SOWs do not follow a universal structured natural language 
such as EARS (Mavin et al., 2009) or FRETISH 
(Giannakopoulou et al., 2020), or at least follow a  
semi-restricted format that begins with either ‘the system 
shall’ or ‘the contractor shall’. Such restrictions are unlikely 
to be enforced by every SOW writer. The PROMISE 
database itself has only 455 of its 604, or roughly 0.75 
(Cleland-Huang, 2007), requirements compliant with the 
latter restrictions. 

We do make at least one assumption: for a statement to 
be called a requirement, it must contain a ‘shall’ as per what 
is mentioned in the introduction above. Other keywords 
could be used including ‘will’ or ‘should’, but following 
standard RE practices (Anon., 2018; DAU, n.d.; INCOSE, 
2017), we stick with ‘shall’. In this scheme, requirements 
that have bullets or lists such as “the system shall comply 
with (a) standard A, (b) standard B, and (c) standard C” 
counts as a single requirement. This, of course, violates the 
rule that requirements need to be singular (Anon., 2018). 

3.2 Research goals 
Given the above context, we endeavour to discover how 
some fundamental algorithms (Naïve Bayes, TF*IDF with 
cosine similarity, and logistical regression) compare with 
each other as well against a simple pattern match and a 
more complex unsupervised learning algorithm in 
Stanford’s GloVe (Pennington et al., 2014). The first three 
will also be subjected to two first order meta-algorithms 

(Simske, 2013) in the form of weighted voting and 
predictive selection. 

In addition, using GloVe we determine the effect of 
various parameters on classification accuracy, both as a 
standalone algorithm and also as the initial categoriser for 
predictive selection. In particular, we use the most prevalent 
words found in the training corpora, starting with the single 
most common word for the governance bin and similarly for 
the system bin, and increasing number of words to the 
second most common, and so on until 15 of the most 
common words (Table 4) are represented. 

4 Process/tasks 
We executed the following process tasks: 

4.1 Data collection 
The process of collecting appropriate datasets for analysis 
was long and arduous, mostly for the lack of publicly 
accessible ground-truthed requirements sets from which to 
train and test our engines. The vast majority of  
publicly-available SOWs either do not come with ground 
truth labels, are limited to software, small (under 50 
requirements), heavily governance-based statements, or a 
combination of some or all of these. To get around this, for 
training purposes, we settled on substituting five reasonably 
large, expired SOWs and specifications, each containing 
nothing but governance statements or system statements, 
specifications, and technical descriptions. Because some 
corpora, such as specification documents, do not have many 
‘shall’ statements but are otherwise relevant to training 
because of the vocabulary used for those corpora, the 
numbers of words (and their frequencies) were deemed 
more relevant than the actual number of “shall” statements. 
For completeness, however, these numbers are also included 
for reference (Table 1). 

All 21 combinations with at least one governance corpus 
and one system corpus were used for training. For reference, 
see Table 2 for the various combinations and their IDs. 

For the test phases for each algorithm, despite the 
tedium of ground-truthing, we had little choice but to do so. 
We collected and manually processed a set of 13 SOW 
corpora (Table 3). 

Extraction of the ‘shall’ statements was trivial. 
Classifying them as either governance or system 
requirements for ground-truthing was time-consuming but 
provided some insight: note that some engineering-related 
requirements such as requiring the use of model-based 
systems engineering (MBSE) were best classified as 
governance requirements as these are levied on engineers 
rather than the system in context. In addition, it was decided 
that given a choice between more false positives in the 
classification of system requirements and more false 
positives in the classification of governance requirements, 
the former was more tolerable, as some governance 
requirements could often be better satisfied by system 
capabilities. For example, if the SOW required the 
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contractor to provide weekly data dumps from the system, it 
might be best to implement a feature in the system to 
automatically send the required data automatically at the 
required intervals. Or if training was required, a system that 
was developed to be user-friendly would reduce the amount 
of manual training involved. 

Table 1 Training corpora 

Type Corpus Industry/type 
‘Shall’ 

statement 
count 

Word 
count 

Governance TrainG01 Defence/ 
enterprise 

communications 
network 

696 163,437 

Governance TrainG09 Construction/ 
laboratory 

199 81,235 

System TrainS02 Agriculture/ 
conservation 
management 

system 

8 55,369 

System TrainS05 Defence/ 
communications 

and data 
management 

system 

6,251 668,912 

System TrainS12 Defence/ 
electronic 

warfare system 

910 200,622 

Four critical infrastructure sectors are represented – 
transportation, defence industrial base, energy, and 
commercial facilities – each of whose representative SOWs 
weigh more heavily towards governance-related 
requirements. 

4.2 Preparation and pre-processing 
Pre-processing the training datasets involved the following: 

• A typical first step, every word in the corpora was 
converted to lowercase. 

• A total of 337 stop words were removed starting with 
Scikit-Learn’s (Pedregosa et al., 2011) English stop 
words combined with the words annex, appendix, 
diagram, example, fig, figure, handbook, may, mil, 
must, page, requirement, shall, table, unless, use, used, 
will, within, and would. These additional common 
words, a few corpus-specific words (steward and 
watershed) and the name of the project proved to be 
prevalent and added no value to the corpora. We used 
Scikit-Learn’s set of stop words as our basis as it was 
one of the most extensive sets to remove the most 
common words in the English language. 

• Punctuation marks were removed. 

• Next, words were combined to prepare for counting by 
passing all of them through NLTK’s (Bird et al., 2009) 

lemmatisation function three times, first treating 
everything as nouns, followed by verbs, then adjectives. 

• The final step involved removing all words that were 
not in NLTK’s set of 235,892 English words. 

Table 2 Training/validation corpora combinations 

Training 
ID 

Validation 
ID Corpora combination 

TR01 V01 TrainG01 + TrainS02 
TR02 V02 TrainG01 + TrainS05 
TR03 V03 TrainG01 + TrainS12 
TR04 V04 TrainG01 + TrainS02 + TrainS05 
TR05 V05 TrainG01 + TrainS02 + TrainS12 
TR06 V06 TrainG01 + TrainS05 + TrainS12 
TR07 V07 TrainG01 + TrainS02 + TrainS05  

+ TrainS12 
TR08 V08 TrainG09 + TrainS02 
TR09 V09 TrainG09 + TrainS05 
TR10 V10 TrainG09 + TrainS12 
TR11 V11 TrainG09 + TrainS02 + TrainS05 
TR12 V12 TrainG09 + TrainS02 + TrainS12 
TR13 V13 TrainG09 + TrainS05 + TrainS12 
TR14 V14 TrainG09 + TrainS02 + TrainS05  

+ TrainS12 
TR15 V15 TrainG01 + TrainG09 + TrainS02 
TR16 V16 TrainG01 + TrainG09 + TrainS05 
TR17 V17 TrainG01 + TrainG09 + TrainS12 
TR18 V18 TrainG01 + TrainG09 + TrainS02  

+ TrainS05 
TR19 V19 TrainG01 + TrainG09 + TrainS02  

+ TrainS12 
TR20 V20 TrainG01 + TrainG09 + TrainS05  

+ TrainS12 
TR21 V21 TrainG01 + TrainG09 + TrainS02  

+ TrainS05 + TrainS12 

Table 3 Test corpora 

SOW # Industry/type 
Requirement counts 

Governance System Total 

Test01 Transportation 
system 

23 15 38 

Test02 Transportation 
services 

19 0 19 

Test03 Defence/C4ISR 
installation 
services 

381 8 389 

Test04 Energy/solar 
system 

331 25 356 

Test05 Defence/ 
communications 
system 

53 0 53 
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Table 3 Test corpora (continued) 

SOW # Industry/type 
Requirement counts 

Governance System Total 

Test06 Defence/inventory 
mgmt. system 
prototype 

50 11 61 

Test07 Defence/ 
cybersecurity 
services 

40 2 42 

Test08 Civil engineering/ 
construction 

174 71 245 

Test09 Defence/ 
communications 
system 

141 4 145 

Test10 Defence/ 
application 
infrastructure 

9 15 24 

Test11 Energy/microgrid 8 55 63 
Test12 Defence/ 

cybersecurity 
system (software) 

20 314 334 

Test13 Defence/ 
communications 
system 

11 315 326 

 Total 1,260 835 2,095 

Figure 1 Probability distribution showing Zipf’s law normalised 
for the two training corpora representing governance 
(see online version for colours) 

  

  
4.3 Vectorisation 
The next step was vectorisation. Using Scikit-Learn’s 
CountVectoriser with a maximum of 500 features and a 
minimum of one mention, we created vectors for each of the 

documents or combined set of documents that represented a 
classification (governance or system). Table 4 shows the 
probability distribution for the first 15 most common words 
associated with each of the classification corpora and  
Figures 1 and 2 show the complete results of the normalised 
vectors following Zipf’s law. The resulting vectors were 
then used for both Naïve Bayes and TF*IDF/cosine 
similarity training. Note that training (and later validation 
for GloVe) used the documents or combination of 
documents as a whole to generate the vectors since some 
documents, such as specification documents, do not have 
‘shall’ statements but still contained valuable information 
on the types of words that is useful for classifying 
requirements statements. 

Figure 2 Probability distribution showing Zipf’s law normalised 
for the three training corpora representing system  
(see online version for colours) 

 

  

 

5 Analysis and results 
The comprehensive set of results, using TR21/V21 are 
depicted in Figures 3 and 4. The other training/validation 
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corporate resulted in similar results. What is interesting to 
note here is the enormous variation among the GloVe 
variants. 

We dive deeper into the results in the following subsections. 

5.1 Traditional algorithms 

5.1.1 Simple pattern match 
In order have a good idea on how well our chosen machine 
learning natural language processing (NLP) algorithms 

work, it is useful to set an extremely simple baseline. For 
our test dataset, we simply checked to see if certain words 
existed in a statement. For the governance classification, we 
picked the words contractor, vendor, offeror, provide and 
support. Statements that did not have these keywords were 
classified as system. As expected, performance was poor 
(training accuracy = 0.687) and can partially be attributed to 
SOW diversity, such as substituting the actual name of the 
vendor for the terms vendor or contractor. 

Figure 3 Accuracy distribution of classification using all 40 algorithms and meta-algorithms over 13 test corpora for the TR21 training 
corpora/V21 validation corpora (see online version for colours) 

 

Table 4 Top 15 word probabilities for training corpora 

Governance training corpora  System training corpora 

TrainG01.pdf TrainG09.pdf  TrainS02.pdf TrainS05.pdf TrainS12.pdf 

contractor 0.0593 contract 0.0667  data 0.1129 display 0.0352 provide 0.0367 
test 0.0237 construction 0.0286  user 0.0364 section 0.0256 data 0.0277 
provide 0.0221 contractor 0.0239  search 0.0281 provide 0.0229 operator 0.0257 
support 0.0206 service 0.0217  site 0.0226 function 0.0199 capability 0.0245 
plan 0.0205 officer 0.0207  component 0.0185 trim 0.0170 track 0.0188 
government 0.0185 review 0.0192  specification 0.0169 control 0.0152 display 0.0185 
report 0.0174 draw 0.0187  access 0.0159 drain 0.0148 control 0.0152 
technical 0.0139 require 0.0176  design 0.0156 accordance 0.0125 channel 0.0151 
train 0.0136 project 0.0172  model 0.0143 data 0.0123 interface 0.0127 
management 0.0134 government 0.0159  time 0.0140 alarm 0.0116 distribution 0.0116 
include 0.0123 clause 0.0153  provide 0.0124 indication 0.0108 support 0.0108 
design 0.0122 work 0.0151  interface 0.0124 mode 0.0108 increment 0.0106 
follow 0.0107 business 0.0148  support 0.0121 test 0.0102 print 0.0099 
engineer 0.0106 design 0.0142  server 0.0112 operator 0.0099 revision 0.0097 
service 0.0106 document 0.0140  management 0.0108 refer 0.0091 equipment 0.0095 
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Figure 4 Accuracy distribution of classification using all 40 algorithms and meta-algorithms over 13 test corpora for each training corpus 
combination (see online version for colours) 

 

Figure 5 Comparing basic algorithms (pattern match, Naïve Bayes, TF*IDF/cosine similarity, and LR) accuracies for training corpora 
(TR01-TR21) (see online version for colours) 

 

Figure 6 Comparing basic algorithms (pattern match, Naïve Bayes, TF*IDF/cosine similarity, and LR) accuracies for test corpora  
(TR01-TR13) using TR21 training corpora (see online version for colours) 

 

 
The next step was to compare accuracy with the results 
taken from three fundamental NLP classification methods. 

5.1.2 Naïve Bayes 
Using the vectorised documents described above, our first 
attempt using the NLTK implementation appeared to be 

ultra-sensitive to the small training dataset and produced 
unusable results. The second attempt involved going back to 
basics for an implementation (Lane et al., 2019) that 
resulted in much more productive classifications. For this 
run, we obtained a mean accuracy of 0.929 across all the 
training corpora. 
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5.1.3 TF*IDF/cosine similarity 
Again, using the vectorised documents, we employed term 
frequency – inverse document frequency (TF*IDF), 
calculating the weighted cosine similarity between the 
requirements and each of the two classification documents. 
For this run, we obtained a mean accuracy of 0.903 across 
all training corpora. 

5.1.4 Logistic regression 
Finally, of the traditional algorithms, we applied LR. For 
the gradient descent portion of this algorithm, we used  
∝ = 10–8 and limited iterations to 500. For this run, we 
obtained a mean accuracy of 0.890 across all the training 
corpora. 

All three NLP ML algorithms performed considerably 
better than the simple pattern match and also shows slightly 
better results for both Naïve Bayes and TF*IDF/cosine 
similarity compared to LR. It exhibits the expected 
comparative accuracy between the two classifiers that use 
the same word vectors as a basis. 

Results of these first four algorithms using all training 
corpora TR01-TR21 are summarised on Figure 5. 

5.1.5 GloVe 
Next, we implemented a more sophisticated algorithm using 
Stanford’s GloVe. The algorithm takes advantage of global 
distances between words using word embeddings or  
multi-dimensional vector representations. Unlike with using 
CountVectoriser, GloVe word representations may number 
in the hundreds of dimensions. Our first implementation 
created a model from the training corpora described above, 
but resulted in a low accuracy of <0.60. With the lack of 
large requirements-specific ground-truthed documents, we 
looked to use a 100-dimensional word representation 
database based on a combination of the entirety of 
Wikipedia from 2014 and the Fifth Edition of the English 
Gigaword (Pennington et al., 2014; Parker et al., 2011). 

This second run used the words in Table 4 as anchor 
words to measure proximity to the bins and consisted of 15  
sub-runs, each run corresponding to the number of words 
from most common to least common. For example, in the 
TrainG01 and TrainS02 combination, GloVe1 was fed the 
words contractor and data to represent the governance and 
system bins respectively. In the TrainG09 and TrainS05 
combination, GloVe3 was fed the words contract, 
construction and contractor to represent the governance bin, 
and display, section and provide to represent the system bin. 
Combined documents used the combined normalised word 
probabilities of those documents, with Figure 8 detailing the 
results of the GloVe variations on the different test corpora. 
Figure 5 includes the best validation values of the GloVe 
variations in Figure 8, which were trained with the 
Wikipedia + Gigaword combination. 

Figures 7 and 8 suggest GloVe is highly sensitive to the 
number of words used as anchors, and generally peaked in 
accuracy (for the validation corpora) using the top ranked 
6–8 common words and dropped again as more words are 
used. Yet, GloVe09 performed the best and most consistent 
results with the test corpora. For some test corpora, GloVe 
performed extremely well, but it could likely be attributed 
to a bias of the system-oriented nature of those corpora 
(Table 3). In general, the best performing GloVe variations 
did not perform any better than the traditional algorithms 
and consistency of performance was rather undependable 
(see Figures 9 and 10). 

5.2 Meta-algorithmic approaches 
The next step involved applying meta-algorithmic 
approaches to see if any advantages can be obtained through 
such advanced consensus approaches. A meta-algorithm is a 
higher-level algorithm that combines more fundamental 
algorithms to obtain results that are as good or better than 
the original basis algorithms. For this research, we looked to 
(Simske, 2013) for descriptions of a library of these  
meta-algorithmic patterns and picked two first-order  
meta-algorithms: weighted voting and predictive selection. 

Figure 7 Comparing GloVe accuracies for validation corpora (V01-V21) 
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Figure 8 Comparing GloVe variations on each test corpus using V21 validation corpora (see online version for colours) 

 

Figure 9 Basic algorithms (blue) compared with GloVe (dotted-black) accuracy across the 13 test corpora for each of the TR01–TR21 
training corpora (V01–V21 for GloVe) (see online version for colours) 

 

Figure 10 Basic algorithms (blue) compared with GloVe (dotted-black) accuracy across the TR01-TR21 training corpora (V01–V21 
validation corpora for GloVe) for each of the 13 test corpora (see online version for colours) 

 

 
5.2.1 Weighted voting 
The weighted voting pattern is often an improvement over 
the simple voting pattern (Simske, 2013). While the voting 
pattern weights each component algorithm equally, the 

weighted voting pattern assigns proportional weights to 
each of the component algorithms based on their 
performances in the training corpora. The weighted voting 
meta-algorithm is depicted in Figure 11. 
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Figure 11 Weighted voting (see online version for colours) 

  
Figure 12 Basic algorithms (blue) compared with weighted voting (dotted-black) accuracy across the 13 test corpora for each of the 

TR01-TR21 training corpora (see online version for colours) 
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Figure 13 Basic algorithms (blue) compared with weighted voting (dotted-black) accuracy across the 21 training corpora for each of the 
13 test corpora (see online version for colours) 

 

Figure 14 Predictive selection meta-algorithm: statistical learning phase (see online version for colours) 

  
 

Weighting performed using five methods: accuracy, 1 ,
error

 

accuracy2, 1 ,
error

 and an information-theory based 

optimal approach (Lin et al., 2003) to weighting of the form 
in equations (1) and (2). 
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In all cases, we obtained little variation in the results among 
the five weighting methods, though they did provide mostly 
improved results when compared to the component 
algorithms taken together (i.e., non-weighed voting). In 
some, weighted voting performed worse than the best of the 
three component algorithms. This can be attributed to the 
small differences in performance among Naïve Bayes, 
TF*IDF/cosine similarity, and LR by themselves (Figure 5). 
The weighted voting algorithm, in many cases, the two 
relatively inferior component algorithms agree on the 
classification and therefore overpower the superior 
component algorithm, which was consistently Naïve Bayes. 
The results comparing the two approaches are summarised 
in Figures 12 and 13. 

5.2.2 Predictive selection 
Predictive selection, like weighted voting, is a first order 
meta-algorithm (Simske, 2013). For this method, a separate 
preliminary categoriser is introduced to bin the input dataset 
and individual component classifiers are chosen to operate 
on each of those bins. The idea is to select a single 
component algorithm for each category that provides the 
best precision for the category. Predictive selection is 
comprised of two phases: the statistical learning phase 
(Figure 14) and the run-time phase (Figure 15). 

For the first phase, we tried 16 preliminary categorisers. 
The first involved using a simple pattern match algorithm 
(described above) on the training corpora and the rest was 
using the 15 GloVe variations already calculated (Figure 7). 
The statistical learning phase for each trial provided us with 
the data to generate the category-scoring matrices. 

The second phase of predictive selection, the run-time 
phase, uses the learnt best algorithms from the training 
phase (i.e., using the category-scoring matrices). 
Categorisation during the run-time phase is then performed 
on the test corpora the same way as the training/validation 

steps during the statistical learning phase. For our runs, 
Naïve Bayes was the overwhelming choice regardless of the 
initial categorisation, followed by LR. 

The results of both phases are depicted in Figures 16 
and 17 and shows tremendous variation across test corpora. 
However, in general, predictive selection performed better 
than weighted voting (and non-weighted voting). In some 
unusual cases, though we saw a slight degradation of 
performance, we observed generally consistent results 
regardless of preliminary categoriser used. For example, 
using the V21 validation corpora which show a dramatic dip 
beyond using eight anchor points, Figure 18 shows 
consistently flat accuracy results given any test corpus 
(Test01-Test13). 

Figure 15 Predictive selection meta-algorithm: run-time phase 
(see online version for colours) 

 

 

Figure 16 Basic algorithms (blue) compared with predictive selection (dotted-black) accuracy across the 13 test corpora for each of the 
TR01-TR21 training corpora (see online version for colours) 
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Figure 17 Basic algorithms (blue) compared with predictive selection (dotted-black) accuracy across the 21 training corpora for each of 
the 13 test corpora (see online version for colours) 

 

Figure 18 Using the V2 validation corpora, the effect of 15 GloVe variations as a preliminary categoriser on the performance of 
predictive selection on each of the 13 test corpora remains little-changed (see online version for colours) 

 

 
This predictive selection performance can be explained by 
the similar performances exhibited by the three traditional 
component algorithms from which the predictive selection 
meta-algorithm chooses: Naïve Bayes, TF*IDF/ 
cosine similarity, and LR. 

5.3 Improvement 
To additionally show the advantage of meta-algorithms, we 
improved the performance of weighted voting by adding a 
fourth component algorithm. As an illustrative example, we 
took the worst-performing set of traditional algorithms 
(TR07, Figure 5) and added GloVe07 to get an 
improvement in the classification of Test13 from 0.74 to 
0.88. The results for Test13 are summarised in Table 5. 
Note that this improvement is much more pronounced in 
Test13 because of the poor results from the traditional 
algorithms for this Test corpus. In general, improvements 
are not universal by adding GloVe as a fourth component 
algorithm since our GloVe implementations were highly 

inconsistent. A mean improvement of 0.03 (from 0.75 to 
0.77) has been observed as the poor-performing GloVe 
variants performed worse than the traditional algorithms and 
weighed-down the improvements. 

Table 5 Accuracies of using various algorithms and the effect 
of GloVe on weighted voting for Test13 using TR07 
only. 

Algorithm or meta-algorithm Accuracy 

1 Naïve Bayes 0.80 
2 TF*IDF/cosine similarity 0.79 
3 Logistic regression 0.64 
4 GloVe07 0.95 
Weighted voting (all variations) using 1, 2 and 3 0.74 
Weighted voting (all variations) using 1, 2, 3 and 4 0.88 

With predictive selection, a potential improvement could be 
had by picking a much better preliminary categoriser than a 
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simple pattern match or the 15 GloVe variations, but for this 
study, none could be identified. 

5.4 Limitations 
We have identified risks to validity due to several 
limitations: 

• Limited publicly available ground-truthed data: While 
there is some body of work that currently exist for 
stakeholder requirements classification, few  
publicly-available ground-truthed requirements corpora 
exist. Perhaps the most referenced is the OpenScience 
tera-PROMISE repository (Cleland-Huang, 2007) of 
625 labelled FRs and NFRs, with the NFRs broken 
down into a set of quality attribute requirements. Other 
work, such as Sainani et al. (2020) involve private data 
processed by multiple subject-matter experts over 
several weeks. For our purposes, every data point used 
for this study involved initial ground-truthing which 
took many hours of review. While we eventually ended 
up with five training corpora with over 1 million words 
and 13 test corpora with over 2,000 requirements. For 
GloVe, we settled on a generic model trained with 
Wikipedia and newswire text. 

• Limited variety: One of the effects of limited  
ground-truthed data is we were limited to the four 
industries to which we had close ties – defence, energy, 
transportation, and construction, and heavily weighted 
to defence contracts. With the variety of system types, 
we expect that with representations from other 
industries, we would have obtained better results, 
particularly with classifying system requirements, as 
industry-specific systems have oftentimes  
industry-specific terms and acronyms. 

• Parsing imperfections: Parsing of corpora involved 
ingesting PDF files and was rudimentary, dependent on 
properly written requirements with shall statements 
ending in periods. Statements that included a shall but 
had multiple bullet points were processed only based on 
the first period. For example, a requirement of the form 
on Table 6 translates to a single requirement ‘the 
system shall: statement 1’. and the rest of the 
requirements, statement 2 through statement n, are 
ignored. 

• Poorly written requirements: While it is not expected 
that requirements follow all of INCOSE’s (2017) 
recommendations for writing requirements, a certain 
level of quality was expected. With the set of corpora at 
our disposal, the larger projects appeared to have 
better-written SOWs, presumably because their 
potentially larger cost and schedule risk necessitated 
more experienced systems engineers to write the 
SOWs. 

• Disguised requirements: This study looked at 
classifying requirements into governance and system, 
the former type levied on the contractor and the latter 

levied on the system. While most requirements have 
clear-cut classifications, a few straddle the line. In 
particular, some requirements initially appear to be 
governance requirements but are really system 
requirements. For example, “the contractor shall design 
the module for reliability” is a requirement levied on 
the contractor/designer but the implications are on the 
system being developed. We noticed that a construction 
SOW we had (Test08) was rife with these requirements 
that are levied on the design-build company but 
describe design constraints of the project. Other 
requirements, such as those focusing on cost, are even 
more blurred, as cost is a responsibility of both project 
manager and engineer. One approach to alleviate this 
problem is multi-label classification similar to that 
espoused in Sabir et al. (2020) and using a rating 
system instead of a binary classification. 

Table 6 Multiple requirements written as bullets 

The system shall 

• Statement 1. 
• Statement 2. 
• … 
• Statement n. 

6 Conclusions 
We initially ran 40 algorithms and meta-algorithm 
variations trained over 21 training corpora combinations 
tested over 13 test corpora for a total of 10,920 
combinations. The results are summarised as follows and on 
Table 7. 

6.1 Training and validation corpora 
In the absence of publicly-available ground-truthed training 
corpora, a substitution using the following was useful and 
provided reasonable results: 

1 several medium to large SOWs and specifications 
documents and combinations of them 

2 Wikipedia + Gigaword combination for GloVe. 

6.2 Comparison of algorithms and meta-algorithms 
A summary of the all the results is shown in Table 7.  
Figure 3 is a slice of that summary using TR21/V21 only, 
and Table 5 shows a different slice. These slices provide 
more pronounced differences in the algorithmic and  
meta-algorithmic implementations. Nonetheless, Table 7, 
regardless of the sub-optimal variations of the component 
algorithms, shows an advantage of meta-algorithmic 
approaches. 

The simple pattern match, as expected, did not do so 
well and results were extremely sensitive to a subject matter 
expert picking the right words for matching. 
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Table 7 Algorithm/meta-algorithm performance summary across all test corpora 

 Algorithm Type Training Validation Test Results across all test corpora 

1 Simple pattern match Exact match N/A N/A Table 3 0.69 
2 Naïve Bayes ML algorithm Table 2 N/A Table 3 0.76 
3 TF*IDF/cosine similarity ML algorithm Table 2 N/A Table 3 0.76 
4 Logistic regression ML algorithm Table 2 N/A Table 3 0.75 
5 GloVe09 (best variant of 

Glove01-GloVe15) 
ML algorithm (deep 

learning) (Pennington  
et al., 2014) 

Pennington  
et al. (2014) 
and Parker  

et al. (2011) 

N/A Table 3 Best (GloVe09): 0.74 
All (GloVe01-15): 0.61 

Highly inconsistent per variant 

6 Weighted voting using 2, 
3, and 4 

Meta-algorithm with 
components 2, 3 and 4 

Table 2 N/A Table 3 0.75 
Only as good as 2, 3 and 4 will 

allow 
7 Predictive selection 

using 1 as prelim. 
categoriser 

Meta-algorithm with 
components 2, 3 and 4 

Table 2 N/A Table 3 0.75 
Only as good as 2, 3 and 4 will 

allow 
8 Predictive selection 

using 5 variants as 
prelim. categoriser 

Meta-algorithm with 
components 2, 3 and 4 

Pennington  
et al. (2014) 
and Parker  

et al. (2011) 

Table 2 Table 3 0.76 
Highly consistent for a particular 
test corpus regardless of GloVe 
performance as a preliminary 

categoriser. Dependent on quality 
of 2, 3 and 4. 

9 Weighted voting using 2, 
3, 4 and 5 

Meta-algorithm with 
components 2, 3, 4 

and 5 

Table 2 N/A Table 3 0.77 
Only as good as 2, 3, 4 and 5 will 

allow 

 
Naïve Bayes, despite its simplicity, provides the best results 
compared with processing time. This is consistent with what 
has been documented in the past (Zhang, 2004; 
Kupervasser, 2014). 

TF*IDF/cosine similarity and Naïve Bayes, despite 
using the same frequency vectors, varied in the training 
corpora, but performed similarly on the test corpora. Naïve 
Bayes, however, generally outperformed the former. 

GloVe was heavily influenced by the number of anchor 
words, and depending on the validation corpora, produced 
highly sensitive results (Figure 7) but did notice that fewer 
anchor words (GloVe01-Glove08) appeared to favour 
highly governance-heavy corpora, while more anchor words 
(GloVe09-GloVe15) favoured system-heavy corpora (e.g., 
see Figure 8). We did see a ‘tightness’ or convergence on 
GloVe09 which may indicate that that GloVe variation 
would be the best to use for future research. 

Weighted voting was good but depended a bit on how 
the inferior algorithms fared. In some cases, the two inferior 
algorithms overwhelmed the best one and resulted in a 
misclassification whereas the individual best classifier 
would have picked the correct one. 

Predictive selection, heavily dependent on the 
component algorithms, improved upon weighted voting 
even with preliminary categorisers that were not ideal. A 
lower bound on classification accuracy can be obtained 
even with these non-ideal preliminary categorisers  
(Figure 18). GloVe is extremely heavy, and while in many 
cases, it can be used to improve results, one must keep in 
mind the resources needed for using GloVe. Perhaps better 

training and validation corpora would make GloVe the 
hands-down choice for classification, but for this study, we 
did not find using GloVe very compelling. 

The final results of all these combinations showed how 
meta-algorithms could be used to stabilise results to 
improve the lower bound on accuracies given certain basic 
or traditional component algorithms. In addition,  
meta-algorithms have the advantage of remaining fresh and 
relevant no matter what new singular component algorithms 
are devised in the future. Meta-algorithms can and often get 
more powerful as these new components are employed. For 
our study, our GloVe implementation was not compelling 
by itself because of the enormous variations of results. 
While GloVe implementations did somewhat improve our 
meta-algorithmic results, a 60-fold increase in processing 
time negates a reason for including GloVe as a component 
unless a superior set of training corpora is identified. 

7 Future work/areas of further experimentation 
and research 

The 10,920 combinations of training, validation, test, and 
algorithms provided some insight on how classifying 
stakeholder requirements could be performed and improved. 
Because of a wide variety of parameters that could be 
substituted for those that we used (such as word anchors for 
GloVe, the training and validation corpora themselves, 
various other mixes of component algorithms, other 
weighting methods, etc.), exhaustive investigation was not 
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feasible. However, the insights gleaned could be used to 
drive future similar efforts. 

There is a lack of publicly accessible ground truth 
documents. An effort to provide such documents to the 
community could be started. We also found that parsing 
needed some work. Basic parsing of PDF files was 
performed and provided reasonably good results, but as 
described in the limitations section above, classification 
results could benefit from a more robust parsing algorithm. 

Classifying requirements not just on words but also on 
the context headers could prove useful. For example, 
requirements under the heading ‘reliability requirements’ 
could provide additional weight on classifying those 
requirements as system and not governance. 

Realising that classification of SOW requirements is not 
always black and white, using multi-label classification 
(Sabir et al., 2020) and providing weights on those could 
prove useful. Finally, the methods used for this research 
could be tailored for three or more classifications that are 
even more fuzzy, such as classifying for quality attributes 
such as availability, security, sustainability, usability, and 
others. 

References 
Abad, Z.S.H. et al. (2017) ‘What works better? A study of 

classifying requirements’, IEEE, pp.496–501. 
Anon. (2018) ‘ISO/IEC/IEEE International Standard – systems and 

software engineering – life cycle processes – requirements 
engineering’, ISO/IEC/IEEE, No. 29148:2018(E). 

Bird, S., Loper, E. and Klein, E. (2009) Natural Language 
Processing with Python, O’Reilly Media Inc., Sebastapol, 
CA. 

Black’s Law Dictionary Free Online Legal Dictionary (n.d.) What 
is SHALL?, 2nd ed. [online] https://thelawdictionary.org/ 
shall/ (accessed 4 February 2022). 

Canedo, E.D. and Mendes, B.C. (2020) ‘Software requirements 
classification using machine learning algorithms’, Entropy, 
Vol. 22, No. 2, pp.1–20. 

Cleland-Huang, J. (2007) Exploración de base de datos de 
Atributos de Calidad [online] http://github.com/Manolomon/ 
tera-promise (accessed 19 November 2021). 

Clements, P. et al. (2003) Documenting Software Architectures: 
Views and Beyond, Pearson Education, Inc., Boston. 

DAU (n.d.) Defense Acquisition Guidebook [online] http://www. 
dau.edu (accessed 11 August 2021). 

Dick, J., Hull, E. and Jackson, K. (2017) Requirements 
Engineering, Springer International Publishing AG, London, 
UK. 

Douglass, B.P. (2016) Agile Systems Engineering, Elsevier, Inc., 
Waltham, MA. 

Giannakopoulou, D., Pressburger, T., Mavridou, A. and 
Schumann, J. (2020) ‘Generation of formal requirements 
from structured natural language’, in Proceedings of the 26th 
International Working Conference on Requirements 
Engineering: Foundation for Software Quality (REFSQ), 
Pisa, Italy. 

Glinz, M. (2020) CPRE Glossary 2.0 [online] http://www.ireb.org/ 
en/downloads/ (accessed 19 November 2021). 

Hefner, R. (2019) Requirements Management Tutorial, Caltech, 
San Diego. 

INCOSE (2015) INCOSE Systems Engineering Handbook: A 
Guide for System Life Cycle Processes and Activities, John 
Wiley & Sons, Inc., San Diego, CA. 

INCOSE (2017) Guide for Writing Requirements, INCOSE,  
San Diego, CA. 

INCOSE (2022) Needs, Requirements, Verification, Validation 
Lifecycle Manual, INCOSE, San Diego. 

Jones, C. (2000) Software Assessments, Benchmarks, and Best 
Practices, Addison Wesley Longman, Inc., New Jersey. 

Kossiakoff, A., Biemer, S.M., Seymour, S.J. and Flanigan, D.A. 
(2020) Systems Engineering Principles and Practice, 3rd ed., 
Wiley, Hoboken, NJ. 

Kotonya, G. and Sommerville, I. (1998) Requirements 
Engineering: Processes and Techniques, John Wiley & Sons, 
Inc., Chichester. 

Kupervasser, O. (2014) ‘The mysterious optimality of Naïve 
Bayes: estimation of the probability in the system of 
‘classifiers’’, Mathematical Theory of Pattern Recognition, 
Vol. 24, No. 1, pp.1–10. 

Ladyman, J. and Wiesner, K. (2020) What is a Complex System?, 
Yale University Press, New Haven, CT. 

Lane, H., Howard, C. and Hapke, H.M. (2019) Natural Language 
Processing in Action, Manning Publications Co., Shelter 
Island, NY. 

Lin, X., Yacoub, S., Burns, J. and Simske, S. (2003) ‘Performance 
analysis of pattern classifier combination by plurality voting’, 
Pattern Recognition Letters, Vol. 24, No. 12, pp.1959–1969. 

Lucio, L., Rahman, S., Cheng, C-H. and Mavin, A. (2017) Just 
Formal Enough? Automated Analysis of EARS Requirements, 
Moffet Field, CA. 

Mahmoud, A. and Williams, G. (2016) ‘Detecting, classifying, and 
tracing non-functional software requirements’, Requirements 
Engineering, Vol. 21, No. 3, pp.357–381. 

Mavin, A., Wilkinson, P., Harwood, A. and Novak, M. (2009) 
EARS (Easy Approach to Requirements Syntax). Atlanta, 
Georgia. 

NASA (n.d.) Appendix C: How to Write a Good Requirement 
[online] http://www.nasa.gov/seh/appendix-c-how-to-write-a-
good-requirement (accessed 11 November 2021). 

Parker, R. et al. (2011) English Gigaword, 5th ed. [online] 
http://catalog.ldc.upenn.edu/LDC2011T07 (accessed 15 
September 2021). 

Pedregosa, F. et al. (2011) ‘Scikit-Learn: machine learning in 
Python’, Journal of Machine Learning Research, Vol. 12, 
pp.2825–2830. 

Pennington, J., Socher, R. and Manning, C.D. (2014) GloVe: 
Global Vectors for Word Representation [online] http://nlp. 
stanford.edu/projects/glove (accessed 15 September 2021). 

Rozanski, N. and Woods, E. (2011) Software Systems 
Architecture: Working With Stakeholders Using Viewpoints 
and Perspectives, 2nd ed., Addison-Wesley Professional, 
Upper Saddle River, NJ. 

Sabir, M., Chrysoulas, C. and Banissi, E. (2020) ‘Multi-label 
classifier to deal with misclassification in non-functional 
requirements’, International Journal of Information 
Technology, Vol. 12, No. 1, pp.101–110 

Sainani, A., Anush, P.R., Joshi, V. and Ghaisas, S. (2020) 
‘Extracting and classifying requirements from software 
engineering contracts’, IEEE, pp.147–157. 

Simske, S.J. (2013) Meta-Algorithmics: Patterns for Robust, Low 
Cost, High Quality Systems, John Wiley & Sons, Ltd.,  
New York, NY. 

Zhang, H. (2004) The Optimality of Naïve Bayes, Miami Beach, 
Florida. 


