

International Journal of Computational Systems
Engineering

ISSN online: 2046-3405 - ISSN print: 2046-3391
https://www.inderscience.com/ijcsyse

Algorithmic and meta-algorithmic machine learning natural
language processing approaches for stakeholder requirements
classification

Arturo N. Villanueva Jr., Steven J. Simske

DOI: 10.1504/IJCSYSE.2023.10056319

Article History:
Received: 19 May 2022
Last revised: 04 April 2023
Accepted: 04 April 2023
Published online: 19 May 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2022 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijcsyse
https://dx.doi.org/10.1504/IJCSYSE.2023.10056319
http://www.tcpdf.org

Int. J. Computational Systems Engineering, Vol. 7, No. 1, 2022 41

Copyright © 2022 Inderscience Enterprises Ltd.

Algorithmic and meta-algorithmic machine learning
natural language processing approaches for
stakeholder requirements classification

Arturo N. Villanueva Jr.* and Steven J. Simske
Colorado State University,
Fort Collins, Colorado, USA
Email: art.villanueva@colostate.edu
Email: steve.simske@colostate.edu
*Corresponding author

Abstract: Requirements engineering begins with discovery at the outset of project acquisition.
Documents typically used during this phase include statements of works (SOWs) and requests for
proposals (RFPs). One of the first challenges of a systems engineer is to carefully classify
requirements into appropriate bins for further processing. This manual process, fundamental to
understanding stakeholder needs and architecting and designing the system(s) of interest, is often
tedious, particularly for large projects that start out with thousands of requirements embedded in
these documents, making the task ripe for automation. For this research, we investigate multiple
combinations of algorithms and meta-algorithms to glean insight as to how well they perform on
this aspect of one of the more mundane aspects of requirements engineering. We obtain, by
running various training corpora representing multiple industries through our pipelines of
(meta-)algorithms, some understanding of what works best and what and how they could be
improved.

Keywords: natural language processing; NLP; classification; meta-algorithms; machine learning;
statements of works; SOWs; requests for proposals; RFPs; document classification.

Reference to this paper should be made as follows: Villanueva Jr., A.N. and Simske, S.J. (2022)
‘Algorithmic and meta-algorithmic machine learning natural language processing approaches for
stakeholder requirements classification’, Int. J. Computational Systems Engineering, Vol. 7,
No. 1, pp.41–56.

Biographical notes: Arturo N. Villanueva Jr. is a Doctor of Engineering student in Systems
Engineering at the Colorado State University. He is also the AI/ML Chief Technology Architect
for the Federal Division of Dell Technologies. He has served as lead systems engineer for
multiple high-profile programs, including billion-dollar initiatives. Art is an entrepreneur, having
founded two renewable energy start-ups, one of which is now trading on the NASDAQ stock
market; and an inventor with three patents. He obtained his Master’s in Architecture-based
Enterprise Systems Engineering from UCSD and his Bachelor’s in Applied Mathematics with a
specialisation in Computing from UCLA.

Steven J. Simske is a Professor in Systems Engineering, and affiliate of Biomedical and
Mechanical Engineering at the Colorado State University (CSU). He is an author of 225 US
patents and more than 450 publications, he is an IS&T, IEEE, and NAI Fellow. He is the Steering
Committee Chair for the ACM DocEng Symposium, and past member of the World Economic
Forum Global Agenda Councils for Illicit Trade, Illicit Economy and the Future of Electronics.
At CSU, he has a cadre of on-campus students in his engineering departments, along with a
larger contingent of on-line/remote graduate students researching in a wide variety of disciplines.

1 Introduction
Requirements engineering (RE), the discipline within
systems engineering dealing with the development, analysis,
and management of requirements that define a system at
successive levels of abstraction (Dick et al., 2017), can be
laborious. One of the most tedious aspects of this area
commences at the onset of the project, or even before, with
the contractor’s receipt of a requests for proposal (RFP) or
statement of work (SOW) [Sainani et al. (2020) for

example, report experts classifying a mean of 17
requirements per hour by hand]. While small projects may
consist of only a few top-level requirements, large
enterprise-scale endeavours such as a public transportation
system or a new communications infrastructure for the US
Navy’s fleet may have thousands. According to Jones
(2000), requirements development alone constitute 7.0% of
a project’s cost for commercial projects and 10% for
military software, translating to 22.7 and 17.5
person-months in requirements development, respectively.

42 A.N. Villanueva Jr. and S.J. Simske

One such tedium in RE is the classifying of
requirements, which is particularly important in the
beginning, for various reasons. Various ways of classifying
have been proposed and used for diverse applications:

1 Classification by contract obligations, whether
governance or architectural (Sainani et al., 2020).

2 Classification by hierarchy or detail (INCOSE, 2015).

3 Classification by functionality or non-functionality
(Glinz, 2020).

4 Classification by types (functional, performance, design
constraints, quality attributes) (Hefner, 2019).

5 Classification by quality attribute and expertise needed
(cybersecurity, reliability, etc.) (Clements et al., 2003;
Rozanski and Woods, 2011).

6 Classification by importance or urgency (Dick et al.,
2017).

The systems engineering ‘Vee’ model, regarded as the
standard process for systems engineering (INCOSE, 2017),
starts out on the left side to address requirements
decomposition starting from stakeholder needs and
requirements. This paper describes, via machine learning
and meta-algorithmic patterns, one of the Vee model’s
earliest needs for organisation by taking as input,
customer-provided SOWs written in natural language and
classifying requirements as governance or system
requirements, similar to #1 above. We, however, did not
want to separate between contract obligations into
governance and architectural, because architecture has a
narrower meaning (Rozanski and Woods, 2011) in the
context of a solution. Design constraints and functional
requirements (FRs) need to also be considered. As such, we
opted to separate statements into the following:

1 systems requirements, those that are levied on the
system being developed and delivered, including FRs
and non-functional requirements (NFRs) (constraints,
performance, and quality attributes)

2 governance requirements, which are requirements that
are not system requirements, and instead are those that
are levied on the project team and other support, and
includes project delivery, compliance, execution,
training, operation, maintenance, and other services.

This separation is often necessary so that the project
management and support teams can focus on the support
activities and the engineering team and focus on the
technical areas. Such a dichotomy is often not cut and dried,
however, as we will see, as some requirements straddle the
line. Requirements such as “the contractor shall produce the
information model of the system and its components” are
indeed levied on the contractor yet are targeted towards the
engineering team; and “the contractor shall implement a
zero-trust architecture” appears to be levied on the
contractor but actually describes a constraint requirement
levied on the system. The training corpora reflect the binary

classification bins as two documents are used – a document
that is purely programmatic (such as a performance work
statement, or PWS) and a document that describes a system
(DAU, n.d.), such as a specification.

For the purposes of this research, we adhere to standard
contract language (Black’s Law Dictionary Free Online
Legal Dictionary, n.d.) and universally accepted convention
that requirements are identified to have the imperative
‘shall’ following the subject (INCOSE, 2015; DAU, n.d.;
Douglass, 2016; Anon., 2018; NASA, n.d.), loosely of the
form “<subject> shall <action verb clause> <object clause>
<optional qualifying clause>.” Some examples include “the
vendor shall provide a monthly-updated integrated master
schedule within 30 days of award date”, “the system shall
be accessible as per the Americans with Disabilities Act
(ADA)”, and “the contractor shall utilise model-based
systems engineering (MBSE) principles.” With the
convention, we distinguish requirements from needs, which
are typically not written in the ‘shall’ structure. Capabilities,
operational and mission threads, needs, use cases, and user
stories may be used to derive requirements but do not
qualify as requirements themselves. A formal conversion to
the ‘shall’ structure is necessary not only for consistency
with a standard form, but also to vet the stakeholders’ wants
and expectations (INCOSE, 2022).

2 Related work
In recent years, some work has been done in classifying
requirements using machine learning techniques, though
many have focused on software engineering projects. There
is notable work on the subject:

Sainani et al. (2020) started with 20 software contracts,
extracted obligations (requirements) from them, and
classified those obligations using Naïve Bayes, random
forest, and support machine vectors (SVMs), as well as
using a bidirectional long-short-term memory (BiLSTM)
deep learning method and Google’s BERT for comparison.
Similarly, Canedo and Mendes (2020) studied multiple
algorithms [logistic regression (LR), SVMs, multinomial
Naïve Bayes (MNB), and k-nearest neighbours (kNN)] for
their accuracy and precision for classifying. Earlier work by
Mahmoud and Williams (2016) used word similarity and
clustering techniques.

Abad et al. (2017) looked at software requirements from
software requirements specifications (SRSs) and classified
them into FRs and NFRs. They investigated the effect of
pre-processing the dataset by applying grammatical,
temporal, and sentimental characteristics of sentences using
parts of speech (POS) tagging to standardise the dataset
requirements for simpler processing. Finally, they classified
NFRs into quality attributes using multiple algorithms, with
Naïve Bayes taking the trophy.

Sabir et al. (2020) tackle misclassification of NFRs by
assigning multiple tags to requirements with the premise
that requirements often straddle a grey area when it comes
to correctly categorising them.

 Algorithmic and meta-algorithmic machine learning NLP approaches for stakeholder requirements classification 43

Giannakopoulou et al. (2020) describe FRETISH and
Lucio et al. (2017) describe EARS, structured natural
languages for formally writing requirements, useful for
reducing conflicting interpretations and improving analysis.

Besides the work by Sainani et al. however, not a lot has
been conducted on ingesting raw SOW data and splitting
them into a set that needs to be consumed by project
management and a set that needs to be consumed by the
systems engineering and technical team. The work led by
Sainani focused on investigating software (not complex
systems) contracts. What they considered as architectural
contract obligations were somewhat limited to architectural
constructs specific to software. Complex systems, on the
other hand, are a generalised collection of interconnected
and interrelated parts, and add another dimension beyond
bits and bytes (Ladyman and Wiesner, 2020). Contractual
obligations for software projects as these systems typically
include uniquely include physical quality attributes such as
reliability and availability, and constraints such as size,
weight, and power (SWaP) (Kossiakoff et al., 2011).

3 Context and research goals
3.1 Context
The general research area is deemed a natural application of
machine learning and automation (Kotonya and
Sommerville, 1998), as the vast majority of RFPs and
SOWs do not follow a universal structured natural language
such as EARS (Mavin et al., 2009) or FRETISH
(Giannakopoulou et al., 2020), or at least follow a
semi-restricted format that begins with either ‘the system
shall’ or ‘the contractor shall’. Such restrictions are unlikely
to be enforced by every SOW writer. The PROMISE
database itself has only 455 of its 604, or roughly 0.75
(Cleland-Huang, 2007), requirements compliant with the
latter restrictions.

We do make at least one assumption: for a statement to
be called a requirement, it must contain a ‘shall’ as per what
is mentioned in the introduction above. Other keywords
could be used including ‘will’ or ‘should’, but following
standard RE practices (Anon., 2018; DAU, n.d.; INCOSE,
2017), we stick with ‘shall’. In this scheme, requirements
that have bullets or lists such as “the system shall comply
with (a) standard A, (b) standard B, and (c) standard C”
counts as a single requirement. This, of course, violates the
rule that requirements need to be singular (Anon., 2018).

3.2 Research goals
Given the above context, we endeavour to discover how
some fundamental algorithms (Naïve Bayes, TF*IDF with
cosine similarity, and logistical regression) compare with
each other as well against a simple pattern match and a
more complex unsupervised learning algorithm in
Stanford’s GloVe (Pennington et al., 2014). The first three
will also be subjected to two first order meta-algorithms

(Simske, 2013) in the form of weighted voting and
predictive selection.

In addition, using GloVe we determine the effect of
various parameters on classification accuracy, both as a
standalone algorithm and also as the initial categoriser for
predictive selection. In particular, we use the most prevalent
words found in the training corpora, starting with the single
most common word for the governance bin and similarly for
the system bin, and increasing number of words to the
second most common, and so on until 15 of the most
common words (Table 4) are represented.

4 Process/tasks
We executed the following process tasks:

4.1 Data collection
The process of collecting appropriate datasets for analysis
was long and arduous, mostly for the lack of publicly
accessible ground-truthed requirements sets from which to
train and test our engines. The vast majority of
publicly-available SOWs either do not come with ground
truth labels, are limited to software, small (under 50
requirements), heavily governance-based statements, or a
combination of some or all of these. To get around this, for
training purposes, we settled on substituting five reasonably
large, expired SOWs and specifications, each containing
nothing but governance statements or system statements,
specifications, and technical descriptions. Because some
corpora, such as specification documents, do not have many
‘shall’ statements but are otherwise relevant to training
because of the vocabulary used for those corpora, the
numbers of words (and their frequencies) were deemed
more relevant than the actual number of “shall” statements.
For completeness, however, these numbers are also included
for reference (Table 1).

All 21 combinations with at least one governance corpus
and one system corpus were used for training. For reference,
see Table 2 for the various combinations and their IDs.

For the test phases for each algorithm, despite the
tedium of ground-truthing, we had little choice but to do so.
We collected and manually processed a set of 13 SOW
corpora (Table 3).

Extraction of the ‘shall’ statements was trivial.
Classifying them as either governance or system
requirements for ground-truthing was time-consuming but
provided some insight: note that some engineering-related
requirements such as requiring the use of model-based
systems engineering (MBSE) were best classified as
governance requirements as these are levied on engineers
rather than the system in context. In addition, it was decided
that given a choice between more false positives in the
classification of system requirements and more false
positives in the classification of governance requirements,
the former was more tolerable, as some governance
requirements could often be better satisfied by system
capabilities. For example, if the SOW required the

44 A.N. Villanueva Jr. and S.J. Simske

contractor to provide weekly data dumps from the system, it
might be best to implement a feature in the system to
automatically send the required data automatically at the
required intervals. Or if training was required, a system that
was developed to be user-friendly would reduce the amount
of manual training involved.

Table 1 Training corpora

Type Corpus Industry/type
‘Shall’

statement
count

Word
count

Governance TrainG01 Defence/
enterprise

communications
network

696 163,437

Governance TrainG09 Construction/
laboratory

199 81,235

System TrainS02 Agriculture/
conservation
management

system

8 55,369

System TrainS05 Defence/
communications

and data
management

system

6,251 668,912

System TrainS12 Defence/
electronic

warfare system

910 200,622

Four critical infrastructure sectors are represented –
transportation, defence industrial base, energy, and
commercial facilities – each of whose representative SOWs
weigh more heavily towards governance-related
requirements.

4.2 Preparation and pre-processing
Pre-processing the training datasets involved the following:

• A typical first step, every word in the corpora was
converted to lowercase.

• A total of 337 stop words were removed starting with
Scikit-Learn’s (Pedregosa et al., 2011) English stop
words combined with the words annex, appendix,
diagram, example, fig, figure, handbook, may, mil,
must, page, requirement, shall, table, unless, use, used,
will, within, and would. These additional common
words, a few corpus-specific words (steward and
watershed) and the name of the project proved to be
prevalent and added no value to the corpora. We used
Scikit-Learn’s set of stop words as our basis as it was
one of the most extensive sets to remove the most
common words in the English language.

• Punctuation marks were removed.

• Next, words were combined to prepare for counting by
passing all of them through NLTK’s (Bird et al., 2009)

lemmatisation function three times, first treating
everything as nouns, followed by verbs, then adjectives.

• The final step involved removing all words that were
not in NLTK’s set of 235,892 English words.

Table 2 Training/validation corpora combinations

Training
ID

Validation
ID Corpora combination

TR01 V01 TrainG01 + TrainS02
TR02 V02 TrainG01 + TrainS05
TR03 V03 TrainG01 + TrainS12
TR04 V04 TrainG01 + TrainS02 + TrainS05
TR05 V05 TrainG01 + TrainS02 + TrainS12
TR06 V06 TrainG01 + TrainS05 + TrainS12
TR07 V07 TrainG01 + TrainS02 + TrainS05

+ TrainS12
TR08 V08 TrainG09 + TrainS02
TR09 V09 TrainG09 + TrainS05
TR10 V10 TrainG09 + TrainS12
TR11 V11 TrainG09 + TrainS02 + TrainS05
TR12 V12 TrainG09 + TrainS02 + TrainS12
TR13 V13 TrainG09 + TrainS05 + TrainS12
TR14 V14 TrainG09 + TrainS02 + TrainS05

+ TrainS12
TR15 V15 TrainG01 + TrainG09 + TrainS02
TR16 V16 TrainG01 + TrainG09 + TrainS05
TR17 V17 TrainG01 + TrainG09 + TrainS12
TR18 V18 TrainG01 + TrainG09 + TrainS02

+ TrainS05
TR19 V19 TrainG01 + TrainG09 + TrainS02

+ TrainS12
TR20 V20 TrainG01 + TrainG09 + TrainS05

+ TrainS12
TR21 V21 TrainG01 + TrainG09 + TrainS02

+ TrainS05 + TrainS12

Table 3 Test corpora

SOW # Industry/type
Requirement counts

Governance System Total

Test01 Transportation
system

23 15 38

Test02 Transportation
services

19 0 19

Test03 Defence/C4ISR
installation
services

381 8 389

Test04 Energy/solar
system

331 25 356

Test05 Defence/
communications
system

53 0 53

 Algorithmic and meta-algorithmic machine learning NLP approaches for stakeholder requirements classification 45

Table 3 Test corpora (continued)

SOW # Industry/type
Requirement counts

Governance System Total

Test06 Defence/inventory
mgmt. system
prototype

50 11 61

Test07 Defence/
cybersecurity
services

40 2 42

Test08 Civil engineering/
construction

174 71 245

Test09 Defence/
communications
system

141 4 145

Test10 Defence/
application
infrastructure

9 15 24

Test11 Energy/microgrid 8 55 63
Test12 Defence/

cybersecurity
system (software)

20 314 334

Test13 Defence/
communications
system

11 315 326

 Total 1,260 835 2,095

Figure 1 Probability distribution showing Zipf’s law normalised
for the two training corpora representing governance
(see online version for colours)

4.3 Vectorisation
The next step was vectorisation. Using Scikit-Learn’s
CountVectoriser with a maximum of 500 features and a
minimum of one mention, we created vectors for each of the

documents or combined set of documents that represented a
classification (governance or system). Table 4 shows the
probability distribution for the first 15 most common words
associated with each of the classification corpora and
Figures 1 and 2 show the complete results of the normalised
vectors following Zipf’s law. The resulting vectors were
then used for both Naïve Bayes and TF*IDF/cosine
similarity training. Note that training (and later validation
for GloVe) used the documents or combination of
documents as a whole to generate the vectors since some
documents, such as specification documents, do not have
‘shall’ statements but still contained valuable information
on the types of words that is useful for classifying
requirements statements.

Figure 2 Probability distribution showing Zipf’s law normalised
for the three training corpora representing system
(see online version for colours)

5 Analysis and results
The comprehensive set of results, using TR21/V21 are
depicted in Figures 3 and 4. The other training/validation

46 A.N. Villanueva Jr. and S.J. Simske

corporate resulted in similar results. What is interesting to
note here is the enormous variation among the GloVe
variants.

We dive deeper into the results in the following subsections.

5.1 Traditional algorithms

5.1.1 Simple pattern match
In order have a good idea on how well our chosen machine
learning natural language processing (NLP) algorithms

work, it is useful to set an extremely simple baseline. For
our test dataset, we simply checked to see if certain words
existed in a statement. For the governance classification, we
picked the words contractor, vendor, offeror, provide and
support. Statements that did not have these keywords were
classified as system. As expected, performance was poor
(training accuracy = 0.687) and can partially be attributed to
SOW diversity, such as substituting the actual name of the
vendor for the terms vendor or contractor.

Figure 3 Accuracy distribution of classification using all 40 algorithms and meta-algorithms over 13 test corpora for the TR21 training
corpora/V21 validation corpora (see online version for colours)

Table 4 Top 15 word probabilities for training corpora

Governance training corpora System training corpora

TrainG01.pdf TrainG09.pdf TrainS02.pdf TrainS05.pdf TrainS12.pdf

contractor 0.0593 contract 0.0667 data 0.1129 display 0.0352 provide 0.0367
test 0.0237 construction 0.0286 user 0.0364 section 0.0256 data 0.0277
provide 0.0221 contractor 0.0239 search 0.0281 provide 0.0229 operator 0.0257
support 0.0206 service 0.0217 site 0.0226 function 0.0199 capability 0.0245
plan 0.0205 officer 0.0207 component 0.0185 trim 0.0170 track 0.0188
government 0.0185 review 0.0192 specification 0.0169 control 0.0152 display 0.0185
report 0.0174 draw 0.0187 access 0.0159 drain 0.0148 control 0.0152
technical 0.0139 require 0.0176 design 0.0156 accordance 0.0125 channel 0.0151
train 0.0136 project 0.0172 model 0.0143 data 0.0123 interface 0.0127
management 0.0134 government 0.0159 time 0.0140 alarm 0.0116 distribution 0.0116
include 0.0123 clause 0.0153 provide 0.0124 indication 0.0108 support 0.0108
design 0.0122 work 0.0151 interface 0.0124 mode 0.0108 increment 0.0106
follow 0.0107 business 0.0148 support 0.0121 test 0.0102 print 0.0099
engineer 0.0106 design 0.0142 server 0.0112 operator 0.0099 revision 0.0097
service 0.0106 document 0.0140 management 0.0108 refer 0.0091 equipment 0.0095

 Algorithmic and meta-algorithmic machine learning NLP approaches for stakeholder requirements classification 47

Figure 4 Accuracy distribution of classification using all 40 algorithms and meta-algorithms over 13 test corpora for each training corpus
combination (see online version for colours)

Figure 5 Comparing basic algorithms (pattern match, Naïve Bayes, TF*IDF/cosine similarity, and LR) accuracies for training corpora
(TR01-TR21) (see online version for colours)

Figure 6 Comparing basic algorithms (pattern match, Naïve Bayes, TF*IDF/cosine similarity, and LR) accuracies for test corpora
(TR01-TR13) using TR21 training corpora (see online version for colours)

The next step was to compare accuracy with the results
taken from three fundamental NLP classification methods.

5.1.2 Naïve Bayes
Using the vectorised documents described above, our first
attempt using the NLTK implementation appeared to be

ultra-sensitive to the small training dataset and produced
unusable results. The second attempt involved going back to
basics for an implementation (Lane et al., 2019) that
resulted in much more productive classifications. For this
run, we obtained a mean accuracy of 0.929 across all the
training corpora.

48 A.N. Villanueva Jr. and S.J. Simske

5.1.3 TF*IDF/cosine similarity
Again, using the vectorised documents, we employed term
frequency – inverse document frequency (TF*IDF),
calculating the weighted cosine similarity between the
requirements and each of the two classification documents.
For this run, we obtained a mean accuracy of 0.903 across
all training corpora.

5.1.4 Logistic regression
Finally, of the traditional algorithms, we applied LR. For
the gradient descent portion of this algorithm, we used
∝ = 10–8 and limited iterations to 500. For this run, we
obtained a mean accuracy of 0.890 across all the training
corpora.

All three NLP ML algorithms performed considerably
better than the simple pattern match and also shows slightly
better results for both Naïve Bayes and TF*IDF/cosine
similarity compared to LR. It exhibits the expected
comparative accuracy between the two classifiers that use
the same word vectors as a basis.

Results of these first four algorithms using all training
corpora TR01-TR21 are summarised on Figure 5.

5.1.5 GloVe
Next, we implemented a more sophisticated algorithm using
Stanford’s GloVe. The algorithm takes advantage of global
distances between words using word embeddings or
multi-dimensional vector representations. Unlike with using
CountVectoriser, GloVe word representations may number
in the hundreds of dimensions. Our first implementation
created a model from the training corpora described above,
but resulted in a low accuracy of <0.60. With the lack of
large requirements-specific ground-truthed documents, we
looked to use a 100-dimensional word representation
database based on a combination of the entirety of
Wikipedia from 2014 and the Fifth Edition of the English
Gigaword (Pennington et al., 2014; Parker et al., 2011).

This second run used the words in Table 4 as anchor
words to measure proximity to the bins and consisted of 15
sub-runs, each run corresponding to the number of words
from most common to least common. For example, in the
TrainG01 and TrainS02 combination, GloVe1 was fed the
words contractor and data to represent the governance and
system bins respectively. In the TrainG09 and TrainS05
combination, GloVe3 was fed the words contract,
construction and contractor to represent the governance bin,
and display, section and provide to represent the system bin.
Combined documents used the combined normalised word
probabilities of those documents, with Figure 8 detailing the
results of the GloVe variations on the different test corpora.
Figure 5 includes the best validation values of the GloVe
variations in Figure 8, which were trained with the
Wikipedia + Gigaword combination.

Figures 7 and 8 suggest GloVe is highly sensitive to the
number of words used as anchors, and generally peaked in
accuracy (for the validation corpora) using the top ranked
6–8 common words and dropped again as more words are
used. Yet, GloVe09 performed the best and most consistent
results with the test corpora. For some test corpora, GloVe
performed extremely well, but it could likely be attributed
to a bias of the system-oriented nature of those corpora
(Table 3). In general, the best performing GloVe variations
did not perform any better than the traditional algorithms
and consistency of performance was rather undependable
(see Figures 9 and 10).

5.2 Meta-algorithmic approaches
The next step involved applying meta-algorithmic
approaches to see if any advantages can be obtained through
such advanced consensus approaches. A meta-algorithm is a
higher-level algorithm that combines more fundamental
algorithms to obtain results that are as good or better than
the original basis algorithms. For this research, we looked to
(Simske, 2013) for descriptions of a library of these
meta-algorithmic patterns and picked two first-order
meta-algorithms: weighted voting and predictive selection.

Figure 7 Comparing GloVe accuracies for validation corpora (V01-V21)

 Algorithmic and meta-algorithmic machine learning NLP approaches for stakeholder requirements classification 49

Figure 8 Comparing GloVe variations on each test corpus using V21 validation corpora (see online version for colours)

Figure 9 Basic algorithms (blue) compared with GloVe (dotted-black) accuracy across the 13 test corpora for each of the TR01–TR21
training corpora (V01–V21 for GloVe) (see online version for colours)

Figure 10 Basic algorithms (blue) compared with GloVe (dotted-black) accuracy across the TR01-TR21 training corpora (V01–V21
validation corpora for GloVe) for each of the 13 test corpora (see online version for colours)

5.2.1 Weighted voting
The weighted voting pattern is often an improvement over
the simple voting pattern (Simske, 2013). While the voting
pattern weights each component algorithm equally, the

weighted voting pattern assigns proportional weights to
each of the component algorithms based on their
performances in the training corpora. The weighted voting
meta-algorithm is depicted in Figure 11.

50 A.N. Villanueva Jr. and S.J. Simske

Figure 11 Weighted voting (see online version for colours)

Figure 12 Basic algorithms (blue) compared with weighted voting (dotted-black) accuracy across the 13 test corpora for each of the

TR01-TR21 training corpora (see online version for colours)

 Algorithmic and meta-algorithmic machine learning NLP approaches for stakeholder requirements classification 51

Figure 13 Basic algorithms (blue) compared with weighted voting (dotted-black) accuracy across the 21 training corpora for each of the
13 test corpora (see online version for colours)

Figure 14 Predictive selection meta-algorithm: statistical learning phase (see online version for colours)

Weighting performed using five methods: accuracy, 1 ,
error

accuracy2, 1 ,
error

 and an information-theory based

optimal approach (Lin et al., 2003) to weighting of the form
in equations (1) and (2).

1ln ln ,j
j

classes j

p
W

N e
  = +   

   
 (1)

where

1
.

1
j

j
classifiers

p
e

N
−

=
−

 (2)

52 A.N. Villanueva Jr. and S.J. Simske

In all cases, we obtained little variation in the results among
the five weighting methods, though they did provide mostly
improved results when compared to the component
algorithms taken together (i.e., non-weighed voting). In
some, weighted voting performed worse than the best of the
three component algorithms. This can be attributed to the
small differences in performance among Naïve Bayes,
TF*IDF/cosine similarity, and LR by themselves (Figure 5).
The weighted voting algorithm, in many cases, the two
relatively inferior component algorithms agree on the
classification and therefore overpower the superior
component algorithm, which was consistently Naïve Bayes.
The results comparing the two approaches are summarised
in Figures 12 and 13.

5.2.2 Predictive selection
Predictive selection, like weighted voting, is a first order
meta-algorithm (Simske, 2013). For this method, a separate
preliminary categoriser is introduced to bin the input dataset
and individual component classifiers are chosen to operate
on each of those bins. The idea is to select a single
component algorithm for each category that provides the
best precision for the category. Predictive selection is
comprised of two phases: the statistical learning phase
(Figure 14) and the run-time phase (Figure 15).

For the first phase, we tried 16 preliminary categorisers.
The first involved using a simple pattern match algorithm
(described above) on the training corpora and the rest was
using the 15 GloVe variations already calculated (Figure 7).
The statistical learning phase for each trial provided us with
the data to generate the category-scoring matrices.

The second phase of predictive selection, the run-time
phase, uses the learnt best algorithms from the training
phase (i.e., using the category-scoring matrices).
Categorisation during the run-time phase is then performed
on the test corpora the same way as the training/validation

steps during the statistical learning phase. For our runs,
Naïve Bayes was the overwhelming choice regardless of the
initial categorisation, followed by LR.

The results of both phases are depicted in Figures 16
and 17 and shows tremendous variation across test corpora.
However, in general, predictive selection performed better
than weighted voting (and non-weighted voting). In some
unusual cases, though we saw a slight degradation of
performance, we observed generally consistent results
regardless of preliminary categoriser used. For example,
using the V21 validation corpora which show a dramatic dip
beyond using eight anchor points, Figure 18 shows
consistently flat accuracy results given any test corpus
(Test01-Test13).

Figure 15 Predictive selection meta-algorithm: run-time phase
(see online version for colours)

Figure 16 Basic algorithms (blue) compared with predictive selection (dotted-black) accuracy across the 13 test corpora for each of the
TR01-TR21 training corpora (see online version for colours)

 Algorithmic and meta-algorithmic machine learning NLP approaches for stakeholder requirements classification 53

Figure 17 Basic algorithms (blue) compared with predictive selection (dotted-black) accuracy across the 21 training corpora for each of
the 13 test corpora (see online version for colours)

Figure 18 Using the V2 validation corpora, the effect of 15 GloVe variations as a preliminary categoriser on the performance of
predictive selection on each of the 13 test corpora remains little-changed (see online version for colours)

This predictive selection performance can be explained by
the similar performances exhibited by the three traditional
component algorithms from which the predictive selection
meta-algorithm chooses: Naïve Bayes, TF*IDF/
cosine similarity, and LR.

5.3 Improvement
To additionally show the advantage of meta-algorithms, we
improved the performance of weighted voting by adding a
fourth component algorithm. As an illustrative example, we
took the worst-performing set of traditional algorithms
(TR07, Figure 5) and added GloVe07 to get an
improvement in the classification of Test13 from 0.74 to
0.88. The results for Test13 are summarised in Table 5.
Note that this improvement is much more pronounced in
Test13 because of the poor results from the traditional
algorithms for this Test corpus. In general, improvements
are not universal by adding GloVe as a fourth component
algorithm since our GloVe implementations were highly

inconsistent. A mean improvement of 0.03 (from 0.75 to
0.77) has been observed as the poor-performing GloVe
variants performed worse than the traditional algorithms and
weighed-down the improvements.

Table 5 Accuracies of using various algorithms and the effect
of GloVe on weighted voting for Test13 using TR07
only.

Algorithm or meta-algorithm Accuracy

1 Naïve Bayes 0.80
2 TF*IDF/cosine similarity 0.79
3 Logistic regression 0.64
4 GloVe07 0.95
Weighted voting (all variations) using 1, 2 and 3 0.74
Weighted voting (all variations) using 1, 2, 3 and 4 0.88

With predictive selection, a potential improvement could be
had by picking a much better preliminary categoriser than a

54 A.N. Villanueva Jr. and S.J. Simske

simple pattern match or the 15 GloVe variations, but for this
study, none could be identified.

5.4 Limitations
We have identified risks to validity due to several
limitations:

• Limited publicly available ground-truthed data: While
there is some body of work that currently exist for
stakeholder requirements classification, few
publicly-available ground-truthed requirements corpora
exist. Perhaps the most referenced is the OpenScience
tera-PROMISE repository (Cleland-Huang, 2007) of
625 labelled FRs and NFRs, with the NFRs broken
down into a set of quality attribute requirements. Other
work, such as Sainani et al. (2020) involve private data
processed by multiple subject-matter experts over
several weeks. For our purposes, every data point used
for this study involved initial ground-truthing which
took many hours of review. While we eventually ended
up with five training corpora with over 1 million words
and 13 test corpora with over 2,000 requirements. For
GloVe, we settled on a generic model trained with
Wikipedia and newswire text.

• Limited variety: One of the effects of limited
ground-truthed data is we were limited to the four
industries to which we had close ties – defence, energy,
transportation, and construction, and heavily weighted
to defence contracts. With the variety of system types,
we expect that with representations from other
industries, we would have obtained better results,
particularly with classifying system requirements, as
industry-specific systems have oftentimes
industry-specific terms and acronyms.

• Parsing imperfections: Parsing of corpora involved
ingesting PDF files and was rudimentary, dependent on
properly written requirements with shall statements
ending in periods. Statements that included a shall but
had multiple bullet points were processed only based on
the first period. For example, a requirement of the form
on Table 6 translates to a single requirement ‘the
system shall: statement 1’. and the rest of the
requirements, statement 2 through statement n, are
ignored.

• Poorly written requirements: While it is not expected
that requirements follow all of INCOSE’s (2017)
recommendations for writing requirements, a certain
level of quality was expected. With the set of corpora at
our disposal, the larger projects appeared to have
better-written SOWs, presumably because their
potentially larger cost and schedule risk necessitated
more experienced systems engineers to write the
SOWs.

• Disguised requirements: This study looked at
classifying requirements into governance and system,
the former type levied on the contractor and the latter

levied on the system. While most requirements have
clear-cut classifications, a few straddle the line. In
particular, some requirements initially appear to be
governance requirements but are really system
requirements. For example, “the contractor shall design
the module for reliability” is a requirement levied on
the contractor/designer but the implications are on the
system being developed. We noticed that a construction
SOW we had (Test08) was rife with these requirements
that are levied on the design-build company but
describe design constraints of the project. Other
requirements, such as those focusing on cost, are even
more blurred, as cost is a responsibility of both project
manager and engineer. One approach to alleviate this
problem is multi-label classification similar to that
espoused in Sabir et al. (2020) and using a rating
system instead of a binary classification.

Table 6 Multiple requirements written as bullets

The system shall

• Statement 1.
• Statement 2.
• …
• Statement n.

6 Conclusions
We initially ran 40 algorithms and meta-algorithm
variations trained over 21 training corpora combinations
tested over 13 test corpora for a total of 10,920
combinations. The results are summarised as follows and on
Table 7.

6.1 Training and validation corpora
In the absence of publicly-available ground-truthed training
corpora, a substitution using the following was useful and
provided reasonable results:

1 several medium to large SOWs and specifications
documents and combinations of them

2 Wikipedia + Gigaword combination for GloVe.

6.2 Comparison of algorithms and meta-algorithms
A summary of the all the results is shown in Table 7.
Figure 3 is a slice of that summary using TR21/V21 only,
and Table 5 shows a different slice. These slices provide
more pronounced differences in the algorithmic and
meta-algorithmic implementations. Nonetheless, Table 7,
regardless of the sub-optimal variations of the component
algorithms, shows an advantage of meta-algorithmic
approaches.

The simple pattern match, as expected, did not do so
well and results were extremely sensitive to a subject matter
expert picking the right words for matching.

 Algorithmic and meta-algorithmic machine learning NLP approaches for stakeholder requirements classification 55

Table 7 Algorithm/meta-algorithm performance summary across all test corpora

 Algorithm Type Training Validation Test Results across all test corpora

1 Simple pattern match Exact match N/A N/A Table 3 0.69
2 Naïve Bayes ML algorithm Table 2 N/A Table 3 0.76
3 TF*IDF/cosine similarity ML algorithm Table 2 N/A Table 3 0.76
4 Logistic regression ML algorithm Table 2 N/A Table 3 0.75
5 GloVe09 (best variant of

Glove01-GloVe15)
ML algorithm (deep

learning) (Pennington
et al., 2014)

Pennington
et al. (2014)
and Parker

et al. (2011)

N/A Table 3 Best (GloVe09): 0.74
All (GloVe01-15): 0.61

Highly inconsistent per variant

6 Weighted voting using 2,
3, and 4

Meta-algorithm with
components 2, 3 and 4

Table 2 N/A Table 3 0.75
Only as good as 2, 3 and 4 will

allow
7 Predictive selection

using 1 as prelim.
categoriser

Meta-algorithm with
components 2, 3 and 4

Table 2 N/A Table 3 0.75
Only as good as 2, 3 and 4 will

allow
8 Predictive selection

using 5 variants as
prelim. categoriser

Meta-algorithm with
components 2, 3 and 4

Pennington
et al. (2014)
and Parker

et al. (2011)

Table 2 Table 3 0.76
Highly consistent for a particular
test corpus regardless of GloVe
performance as a preliminary

categoriser. Dependent on quality
of 2, 3 and 4.

9 Weighted voting using 2,
3, 4 and 5

Meta-algorithm with
components 2, 3, 4

and 5

Table 2 N/A Table 3 0.77
Only as good as 2, 3, 4 and 5 will

allow

Naïve Bayes, despite its simplicity, provides the best results
compared with processing time. This is consistent with what
has been documented in the past (Zhang, 2004;
Kupervasser, 2014).

TF*IDF/cosine similarity and Naïve Bayes, despite
using the same frequency vectors, varied in the training
corpora, but performed similarly on the test corpora. Naïve
Bayes, however, generally outperformed the former.

GloVe was heavily influenced by the number of anchor
words, and depending on the validation corpora, produced
highly sensitive results (Figure 7) but did notice that fewer
anchor words (GloVe01-Glove08) appeared to favour
highly governance-heavy corpora, while more anchor words
(GloVe09-GloVe15) favoured system-heavy corpora (e.g.,
see Figure 8). We did see a ‘tightness’ or convergence on
GloVe09 which may indicate that that GloVe variation
would be the best to use for future research.

Weighted voting was good but depended a bit on how
the inferior algorithms fared. In some cases, the two inferior
algorithms overwhelmed the best one and resulted in a
misclassification whereas the individual best classifier
would have picked the correct one.

Predictive selection, heavily dependent on the
component algorithms, improved upon weighted voting
even with preliminary categorisers that were not ideal. A
lower bound on classification accuracy can be obtained
even with these non-ideal preliminary categorisers
(Figure 18). GloVe is extremely heavy, and while in many
cases, it can be used to improve results, one must keep in
mind the resources needed for using GloVe. Perhaps better

training and validation corpora would make GloVe the
hands-down choice for classification, but for this study, we
did not find using GloVe very compelling.

The final results of all these combinations showed how
meta-algorithms could be used to stabilise results to
improve the lower bound on accuracies given certain basic
or traditional component algorithms. In addition,
meta-algorithms have the advantage of remaining fresh and
relevant no matter what new singular component algorithms
are devised in the future. Meta-algorithms can and often get
more powerful as these new components are employed. For
our study, our GloVe implementation was not compelling
by itself because of the enormous variations of results.
While GloVe implementations did somewhat improve our
meta-algorithmic results, a 60-fold increase in processing
time negates a reason for including GloVe as a component
unless a superior set of training corpora is identified.

7 Future work/areas of further experimentation
and research

The 10,920 combinations of training, validation, test, and
algorithms provided some insight on how classifying
stakeholder requirements could be performed and improved.
Because of a wide variety of parameters that could be
substituted for those that we used (such as word anchors for
GloVe, the training and validation corpora themselves,
various other mixes of component algorithms, other
weighting methods, etc.), exhaustive investigation was not

56 A.N. Villanueva Jr. and S.J. Simske

feasible. However, the insights gleaned could be used to
drive future similar efforts.

There is a lack of publicly accessible ground truth
documents. An effort to provide such documents to the
community could be started. We also found that parsing
needed some work. Basic parsing of PDF files was
performed and provided reasonably good results, but as
described in the limitations section above, classification
results could benefit from a more robust parsing algorithm.

Classifying requirements not just on words but also on
the context headers could prove useful. For example,
requirements under the heading ‘reliability requirements’
could provide additional weight on classifying those
requirements as system and not governance.

Realising that classification of SOW requirements is not
always black and white, using multi-label classification
(Sabir et al., 2020) and providing weights on those could
prove useful. Finally, the methods used for this research
could be tailored for three or more classifications that are
even more fuzzy, such as classifying for quality attributes
such as availability, security, sustainability, usability, and
others.

References
Abad, Z.S.H. et al. (2017) ‘What works better? A study of

classifying requirements’, IEEE, pp.496–501.
Anon. (2018) ‘ISO/IEC/IEEE International Standard – systems and

software engineering – life cycle processes – requirements
engineering’, ISO/IEC/IEEE, No. 29148:2018(E).

Bird, S., Loper, E. and Klein, E. (2009) Natural Language
Processing with Python, O’Reilly Media Inc., Sebastapol,
CA.

Black’s Law Dictionary Free Online Legal Dictionary (n.d.) What
is SHALL?, 2nd ed. [online] https://thelawdictionary.org/
shall/ (accessed 4 February 2022).

Canedo, E.D. and Mendes, B.C. (2020) ‘Software requirements
classification using machine learning algorithms’, Entropy,
Vol. 22, No. 2, pp.1–20.

Cleland-Huang, J. (2007) Exploración de base de datos de
Atributos de Calidad [online] http://github.com/Manolomon/
tera-promise (accessed 19 November 2021).

Clements, P. et al. (2003) Documenting Software Architectures:
Views and Beyond, Pearson Education, Inc., Boston.

DAU (n.d.) Defense Acquisition Guidebook [online] http://www.
dau.edu (accessed 11 August 2021).

Dick, J., Hull, E. and Jackson, K. (2017) Requirements
Engineering, Springer International Publishing AG, London,
UK.

Douglass, B.P. (2016) Agile Systems Engineering, Elsevier, Inc.,
Waltham, MA.

Giannakopoulou, D., Pressburger, T., Mavridou, A. and
Schumann, J. (2020) ‘Generation of formal requirements
from structured natural language’, in Proceedings of the 26th
International Working Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ),
Pisa, Italy.

Glinz, M. (2020) CPRE Glossary 2.0 [online] http://www.ireb.org/
en/downloads/ (accessed 19 November 2021).

Hefner, R. (2019) Requirements Management Tutorial, Caltech,
San Diego.

INCOSE (2015) INCOSE Systems Engineering Handbook: A
Guide for System Life Cycle Processes and Activities, John
Wiley & Sons, Inc., San Diego, CA.

INCOSE (2017) Guide for Writing Requirements, INCOSE,
San Diego, CA.

INCOSE (2022) Needs, Requirements, Verification, Validation
Lifecycle Manual, INCOSE, San Diego.

Jones, C. (2000) Software Assessments, Benchmarks, and Best
Practices, Addison Wesley Longman, Inc., New Jersey.

Kossiakoff, A., Biemer, S.M., Seymour, S.J. and Flanigan, D.A.
(2020) Systems Engineering Principles and Practice, 3rd ed.,
Wiley, Hoboken, NJ.

Kotonya, G. and Sommerville, I. (1998) Requirements
Engineering: Processes and Techniques, John Wiley & Sons,
Inc., Chichester.

Kupervasser, O. (2014) ‘The mysterious optimality of Naïve
Bayes: estimation of the probability in the system of
‘classifiers’’, Mathematical Theory of Pattern Recognition,
Vol. 24, No. 1, pp.1–10.

Ladyman, J. and Wiesner, K. (2020) What is a Complex System?,
Yale University Press, New Haven, CT.

Lane, H., Howard, C. and Hapke, H.M. (2019) Natural Language
Processing in Action, Manning Publications Co., Shelter
Island, NY.

Lin, X., Yacoub, S., Burns, J. and Simske, S. (2003) ‘Performance
analysis of pattern classifier combination by plurality voting’,
Pattern Recognition Letters, Vol. 24, No. 12, pp.1959–1969.

Lucio, L., Rahman, S., Cheng, C-H. and Mavin, A. (2017) Just
Formal Enough? Automated Analysis of EARS Requirements,
Moffet Field, CA.

Mahmoud, A. and Williams, G. (2016) ‘Detecting, classifying, and
tracing non-functional software requirements’, Requirements
Engineering, Vol. 21, No. 3, pp.357–381.

Mavin, A., Wilkinson, P., Harwood, A. and Novak, M. (2009)
EARS (Easy Approach to Requirements Syntax). Atlanta,
Georgia.

NASA (n.d.) Appendix C: How to Write a Good Requirement
[online] http://www.nasa.gov/seh/appendix-c-how-to-write-a-
good-requirement (accessed 11 November 2021).

Parker, R. et al. (2011) English Gigaword, 5th ed. [online]
http://catalog.ldc.upenn.edu/LDC2011T07 (accessed 15
September 2021).

Pedregosa, F. et al. (2011) ‘Scikit-Learn: machine learning in
Python’, Journal of Machine Learning Research, Vol. 12,
pp.2825–2830.

Pennington, J., Socher, R. and Manning, C.D. (2014) GloVe:
Global Vectors for Word Representation [online] http://nlp.
stanford.edu/projects/glove (accessed 15 September 2021).

Rozanski, N. and Woods, E. (2011) Software Systems
Architecture: Working With Stakeholders Using Viewpoints
and Perspectives, 2nd ed., Addison-Wesley Professional,
Upper Saddle River, NJ.

Sabir, M., Chrysoulas, C. and Banissi, E. (2020) ‘Multi-label
classifier to deal with misclassification in non-functional
requirements’, International Journal of Information
Technology, Vol. 12, No. 1, pp.101–110

Sainani, A., Anush, P.R., Joshi, V. and Ghaisas, S. (2020)
‘Extracting and classifying requirements from software
engineering contracts’, IEEE, pp.147–157.

Simske, S.J. (2013) Meta-Algorithmics: Patterns for Robust, Low
Cost, High Quality Systems, John Wiley & Sons, Ltd.,
New York, NY.

Zhang, H. (2004) The Optimality of Naïve Bayes, Miami Beach,
Florida.

