COVID-19: machine learning methods applied for twitter sentiment analysis of Indians before, during and after lockdown
by H.S. Hota; Dinesh K. Sharma; Nilesh Verma
International Journal of Computing Science and Mathematics (IJCSM), Vol. 17, No. 1, 2023

Abstract: This paper emphasises the analysing sentiment of Indian citizens based on Twitter data using machine learning (ML) based approaches. The sentiment of about 1,51,798 tweets extracted from Twitter social networking and analysed based on tweets divided into six different segments, i.e., before lockdown, first lockdown, lockdown 2.0, lockdown 3.0, lockdown 4.0 and after lockdown (Unlock 1.0). Empirical results show that ML-based approach is efficient for sentiment analysis (SA) and producing better results, out of 10 ML-based models developed using N-Gram (N = 1,2,3,1-2,1-3) features for SA, linear regression model with term frequency - inverse term frequency (Tf-Idf) and 1-3 Gram features is outperforming with 81.35% of accuracy. Comparative study of the sentiment of the above six periods indicates that negative sentiment of Indians due to COVID-19 is increasing (About 4%) during first lockdown by 4.0% and then decreasing during lockdown 2.0 (34.10%) and 3.0 (34.12%) by 2% and suddenly increased again by 4% (36%) during 4.0 and finally reached to its highest value of 38.57% during unlock 1.0.

Online publication date: Thu, 20-Apr-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com