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Abstract: In this paper, we reformulate a problem of pricing American put options
to linear complementarity problem. The space and the time are discretised with
the finite difference method in the Crank-Nickolson approach, which leads to
present the put option price as a solution of the linear complementarity problem.
For solving this problem and evaluating the put options we use a fast algorithm.
We apply our study for an example on oil options.
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1 Introduction

ExxonMobil Corporation is an American oil and gas company, headed by Darren Woods
and headquartered in Irving, a suburb of Dallas. It has 45 refineries in twenty-five countries
which have a distillation capacity of 6.3 million barrels of oil per day. It also has 42,000
service stations in more than 100 countries under the Exxon, Esso and Mobil brands.
ExxonMobil is also a major producer of petrochemical products.

Oil is not like any other material and its price would not be set by the market. Indeed,
on the free market, price fluctuations are natural and depend on a large number of random
economic, political or even geological events. These fluctuations constitute a permanent
threat to oil producers because they place these operators at a significant risk of financial
loss. So, how to manage this risk? This is the question we want to answer through this
paper. For that we propose the use of the American options and we will show how this tool
makes it possible to manage the problem effectively. An option is defined as a derivative
product or a contract between two parties. It gives the buyer or the seller the right to buy or
sell a call option and put option. There are several types of options: American, European,
Asian and Bermudian options. The most usable options in the market are the European and
the American options. The European options can only be exercised at the expiration date,
while the American options can be exercised at any time until the expiration date. The first
pricing option models are designed to evaluate European options. Black-Scholes model was
the celebrated one for pricing European option with constant volatility. This model was
published in 1973. The Black-Scholes formula makes it possible to calculate the theoretical
value of a European option from a certain number of parameters. However, contrary to the
previous model, the binomial model calculates the value of an option by decomposing the
maturity T expressed in years of the option into n equal periods of maturity ∆t. Firstly, it
was proposed by Cox et al. (1979). By using this model we can simply calculate the price
of an European option. In Black and Scholes (1973), Cox et al. (1979), Davis et al. (1993),
Dupire (1994) and Wu (2004), the authors describe models for pricing European options.
Improved models that have incorporated constant volatility with European options generally
have larger pricing errors in comparison with models that used American options. Estimate
the price of American options is one of the most difficult problems of options theory. The
difficulty is that the American options have no explicit solution contrarily to the European
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options. Hence the interest of thinking about methods of pricing American options. There
are many methods for pricing American options. For example in Breen (1991), the author
presented the accelerated binomial option pricing model; this model can be considered as
a binomial approximation of the Geske-Johnson continuous time model for the value of
American put option. In Brennan and Schwartz (1977), the authors developed an algorithm
to evaluate the price of American put option when this put option has a limited life. The work
of Bunch and Johnson (1992), shows the development of an expression for the American put
price. In addition the authors calculated put prices using modified Geske-Johnson approach.
In Oosterlee (2003), Oosterlee proposed a nonlinear multi-grid method for solving linear
complementarity problems. The problem of evaluating American put options leads to the
resolution of a 2D partial differential equation with a free boundary. Recently, in Grossinho
et al. (2018), authors presented a generalisation of nonlinear Black-Scholes equation for
pricing American call options, they transformed the free boundary problem for the Black-
Scholes nonlinear equation to the Gamma variational inequality, and they used the projective
successive over relaxation method for solving the Gamma variational inequality.

In this paper, we propose an application of the Black and Scholes; this application is
linked to oil options. Investors or hedgers can use options in the oil market to obtain the right
to buy or sell physical crude or futures contracts at a fixed price before the options expire.
In contrast to futures contracts, options do not have to be exercised at maturity, which gives
the contract holder more flexibility. Traders have the ability to collect premiums by selling
oil options. If traders do not expect oil prices to change sharply in any direction (up or
down), oil options offer them the opportunity to make a profit by selling out-of-the-money
oil options. Uçal, İ. and Kahraman (2009) developed a new method to evaluate investments
in reality, this model consists in evaluating fuzzy real options and it gives an application
in oil investment valuations. We can cite as example of models evaluating oil options the
works (Cortazar and Schwartz, 2002; Smith and McCardle, 1999). The model described in
this work is the Black-Scholes model. This model assumes that the underlying asset does
not pay any dividend forth duration of the option, but in our work we give interest to paying
dividends by adding a dividend rate to the Black-Scholes equation, and we discuss the
impact of the variation of dividend rate on the American put option price. The main purpose
of this paper is to prove that the resolution of pricing American put option problem leads
to resolution of a linear complementarity problem. For prove it we use the finite difference
method to discretise the space and the time, this discretisation results a tridiagonal matrix. In
addition, using the concept of P-matrix we obtain an important condition for the uniqueness
of the solution. We propose for the resolution of the linear complementarity problem an
efficient and fast algorithm that has a finite numbers of steps presented in Achik et al. (2020).
In addition, we will use the results found by solving the linear complementarity problem to
apply them to an example on oil options.

This paper is organised as follows. The American put option pricing model is described
in Section 2. In Section 3, we present a discretisation of the space and the time, and then we
obtain a linear complementarity problem. This last one is solved by a numerical algorithm.
Numerical results are performed in Section 4. In the last section, we present an example of
oil options. We close this paper with a conclusion.

2 Presentation of the model

The Black-Scholes model is a mathematic model which the price of underlying asset is
a stochastic process in continuous time. This model developed in 1973 by Fischer Black
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and Myron Scholes. In this model, we assumed that the dynamics of the underlying asset
follows the following process dSt

St
= (µ− y)dt+ σdWt, whereS represents the underlying

asset, µ the expected instantaneous rate of return of the underlying asset, y the continuous
dividend rate, σ2 is the instantaneous variance of the return on the assets and W is a Wiener
process. We also assume that there is no possibility of arbitration.

The put option V (S, t) must satisfy the following partial derivative equation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r − y)S

∂V

∂S
= rV (1)

In the fact, we have dS = (µ− y)Sdt+ σSdW , according to Ito’s lemma we obtain
dV =

(
∂V
∂t + 1

2σ
2S2 ∂2V

∂S2 + (µ− y)S ∂V
∂S

)
dt+ σS ∂V

∂S dW , we pose Π = −V + ∂V
∂S S, so

we have the following expressions ∆Π = −∆V + ∂V
∂S ∆S, ∆S = (µ− y)S∆t+ σS∆W

and ∆V =
(

∂V
∂t + 1

2σ
2S2 ∂2V

∂S2 + (µ− y)S ∂V
∂S

)
∆t+ σS ∂V

∂S ∆W . Therefore we obtain

∆Π = −
[(

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (µ− y)S

∂V

∂S

)
∆t+ σS

∂V

∂S
∆W

]
+

∂V

∂S
[(µ− y)S∆t+ σS∆W ]

as a result we have ∆Π = −∂V
∂t ∆t− 1

2σ
2S2 ∂2V

∂S2 ∆t. Then, we have to use the concept of
lack of arbitrage opportunity. If an investment strategy Π is invested entirely in risk-free
assets, the return of this strategy will be [(r − y)Π− yV ]∆t for the period ∆t, where r is
the risk-free rate of interest because the right term of the previous equation doesn’t contain
any random variable, it cannot be greater or smaller than [(r − y)Π− yV ]∆t, otherwise
a possibility of risk-free profit would exist.

Therefore [(r − y)Π− yV ]∆t = ∆Π. By replacing the terms Π and ∆Π by their
expressions, we obtain the following partial differential equation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r − y)S

∂V

∂S
= rV.

In the simple case of the put option, we can use the three Dirichlet conditions that
areV (0, t) = max(E − 0, 0) = E, lim

St→∞
V (St, t) = 0 andV (ST , T ) = max(E − ST , 0),

where E represents the exercise price of the option and T is its expiry date.
The evaluation of American options poses an additional difficulty, due to the freedom of

exercise. Let us say that we will restrict to this paper in the case of the simple American put
option, but according to the argument of the absence of arbitration, the freedom of exercise
makes the price of the put option V (S, t), for example, can never be less than its intrinsic
value, V (S, t) ≥ max(E − S, 0), the freedom of exercise implies the presence of a free
bound: a value Sf (t) of the underlying, such that for all S ∈ [0, Sf (t)], the rational holder
must exercise the option. And for all S ∈ [Sf (t),∞], it is economically preferable not to
exercise it. Note that the value of Sf (t) is not only unknown a priori, but varies with time.
Equation (1) governs the form of the function V (S, t), as long as S ∈ [Sf (t),∞], so long
as it is not exercised. On the other hand, only the following inequation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r − y)S

∂V

∂S
− rV ≤ 0 is validated on the region [0, Sf (t)] .
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So according to the value of the underlying we have two different systems:
In the region [0, Sf (t)]{

V (S, t)−max(E − S, 0) = 0
∂V (S, t)

∂t
+

1

2
σ2S2 ∂

2V (S, t)

∂S2

+(r − y)S
∂V (S, t)

∂S
− rV (S, t) ≤ 0

and the other region [Sf (t),∞]{
V (S, t)−max(E − S, 0) ≥ 0

∂V (S, t)

∂t
+

1

2
σ2S2 ∂

2V (S, t)

∂S2

+(r − y)S
∂V (S, t)

∂S
− rV (S, t) = 0

With appropriate boundary conditions, and if we knewSf (t), these systems could be solved.
Since the bound Sf (t) is unknown, a complementarity approach is used to evaluate the
option without explicit reference to Sf (t). The systems (2) and (3) are combined in the
form D.K = 0; −D ≥ 0 and K ≥ 0, such that

D =
∂V (S, t)

∂t
+

1

2
σ2S2 ∂

2V (S, t)

∂S2
+ (r − y)S

∂V (S, t)

∂S
− rV (S, t)

and K = V (S, t)−max(E − S, 0), with the following boundary conditions

V (0, t) = max(E − 0, 0) = E, lim
St→∞

V (St, t) = 0

and V (ST , T ) = max(E − ST , 0).
A transformation of the variable St, makes it possible to obtain a formulation of the

evaluation problem that is useful from an algorithmic point of view. By applying the
transformation xt = lnSt then we have the following partial differential equation

∂P

∂t
(x, t) +

1

2
σ2 ∂

2P

∂x2
(x, t) + (r − y − σ2

2
)
∂P

∂x
(x, t) = rP (x, t) (2)

where P (x, t) an American put option.
In the fact, we already have dS = (µ− y)Sdt+ σSdW . Let x = lnS then, ∂x

∂S = 1
S ;

∂2x
∂S2 = − 1

S2 ; ∂x
∂t = 0, by applying the lemma of Ito we have

dx =

(
∂x

∂S
(µ− y)S +

∂x

∂t
+

1

2

∂2x

∂S2
σ2S2

)
dt+

∂x

∂S
σSdW

so dx = (µ− y − σ2

2 )dt+ σdW , then the partial differential equation is as follows

∂P

∂t
(x, t) +

1

2
σ2 ∂

2P

∂x2
(x, t) + (r − y − σ2

2
)
∂P

∂x
(x, t) = rP (x, t).
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The value of the American put option P (xt, t) can be obtained by solving the following
complementarity problem F.G = 0, −F ≥ 0 and G ≥ 0, such that

F =
∂P (x, t)

∂t
+

1

2
σ2 ∂

2P (x, t)

∂x2
+ (r − y)

∂P (x, t)

∂x
− rP (x, t)

and G = P (x, t)−max(E − ex, 0) with the following boundary conditions
lim

x→−∞
P (x, t) = lim

x→−∞
max(E − ex, 0) = E, lim

x→∞
P (x, t) = 0 and P (x, T ) =

max(E − ex, 0).

3 Discretisation and localisation of pricing American option problem

The location of the space of the variables consists in limiting an originally infinite space.
The dimension of the time is intrinsically bounded by the expiry date of the option: t ∈
[0, T ]. The underlying dimension must be artificially bounded for the purposes of numerical
resolution: S ∈ [S−, S+]. It is usually sufficient to fix the value of S+ at two or three times
the value of the exercise price. The treatment of S− is discussed below.

We obtain a discretisation of the continuous space of the variablesS and t by subdividing
the time axis into M intervals of length ∆t = T

M , and the axis of the underlying in N

intervals of length ∆S = S+−S−

N . The dicretised space of the original variables (S, t) then
corresponds to (N + 1)× (M + 1) points (S− + n∆S,m∆t); 0 ≤ m ≤ M ; 0 ≤ n ≤ N.

The dicretised space of the transformed variables (x, t) is represented by the (N + 1)×
(M + 1) points (x− + n∆x,m∆t); 0 ≤ m ≤ M ; 0 ≤ n ≤ N , such that x− = lnS−,
and ∆x = x+−x−

N with x+ = lnS+. Note that the discretisation used is uniform in the
x-dimension, and not induced by the discretisation of S. For numerical tests, we will set
the values ∆S = S− and x− = ln∆S; this assures us that the lower bound S− converges
to 0 with ∆S, without meeting the indeterminate form ln(0).

The value of the option at the grid points of the space (x, t) will be denoted Pm
n =

P (x− + n∆x,m∆t) , 0 ≤ m ≤ M, 0 ≤ n ≤ N. The boundary conditions will be as
follows Pm

0 = max(E − ex, 0) = E, Pm
N = max(E − ex, 0) = 0 and PM

n = max(E −
e(x

−+n∆x), 0).
We will use the finite difference method in the Crank-Nicholson approach Umeorah

and Mashele (2019). This approach makes it possible to replace the partial derivatives of
the left part of (4) by approximations

Pm+1
n −Pm

n

∆t + 1
4σ

2 Pm+1
n+1 −2Pm+1

n +Pm+1
n−1

(∆x)2 + 1
4σ

2 Pm
n+1−2Pm

n +Pm
n−1

(∆x)2

+ (r − y − σ2

2 )
Pm+1

n+1 −Pm+1
n−1

2∆x + (r − y − σ2

2 )
Pm

n+1−Pm
n−1

2∆x − 1
2rP

m+1
n − 1

2rP
m
n

This expression, once multiplied by ∆t, will be represented matricially in the following
form Ap−Bq, with Aii = −a, Ai,i+1 = 1− b, Ai,i+2 = −c and Aij = 0 for all i > j or
i+ 2 < j; pi = Pm

i , qi = Pm+1
i , Bii = a, Bi,i+1 = 1 + b, Bi,i+2 = c and Bij = 0 for all

i > j or i+ 2 < j, such that a = σ2∆t
4(∆x)2 −

(
r − y − σ2

2

)
∆t
2∆x , b =

(
− σ2

2(∆x)2 − r
2

)
∆t

and c = σ2∆t
4(∆x)2 +

(
r − y − σ2

2

)
∆t
2∆x . Since the values of Pm

0 , Pm+1
0 , Pm

N and Pm+1
N
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are dictated by the boundary conditions, it is possible to decompose (Ap−Bq) in the
form Mpm + sm − Cm+1 such that M is a tridiagonal matrix such that mi+1,i = −a,
mii = 1− b and mi,i+1 = −c; pm =

(
Pm
1 , ..., Pm

N−2, P
m
N−1

)T
; sm = (−a.E, 0, ..., 0)

T

and Cm+1 = ΛPm+1 +Qm+1, where Pm+1 =
(
Pm+1
1 , Pm+1

2 , ..., Pm+1
N

)T
, Qm+1 =(

a.Pm+1
0 , 0, ..., 0, c.Pm+1

N

)T
and Λ is a tridiagonal matrix defined by Λi+1,i = a, Λi,i =

1 + b and Λi,i+1 = c.as a result we come across a linear complementarity problem such
as Mpm − bm+1 such that bm+1 = Cm+1 − sm, where M is a matrix of size (N − 1)×
(N − 1).

Once the space discretises, and once the partial derivative operator adapts to this space,
it is possible to write a discrete version of the problem of continuous complementarity.

The matrix notation allows us to enlarge the problem to the entire space of the underlying
(∀m) by rewriting the previous problem in the form of the linear complementarity problem
(LCP). Find pm ∈ RN−1 such as (Mpm − bm+1).(pm − pM ) = 0, pm − pM ≥ 0, and
Mpm − bm+1 ≥ 0 where the vector pM is the terminal vector of the exercise price
characterised by the function max(E − ex, 0).

There are M such problems, one for each time step 0 ≤ m ≤ M − 1. Pricing the value
of the option requires solving these M problems; although we must calculate the value of
the option at all points of the discretisation of space (x, t) .

To prove the existence and the uniqueness of the solution of the LPC, we will prove
that the matrix M associated with this problem is a P -matrix i.e. all its principal minors
are strictly positive. See Samelson et al. (1958), Cottle et al. (1992) and Murty (1972).
In the fact, we have M is a tridiagonal matrix such that mi,i−1 = −a, mii = 1− b and
mi,i+1 = −c.

We assume that r > σ2

2 (1 + 1
∆x ) + y. Since M is a tridiagonal matrix we have

detM[N−1] = (1− b) detM[N−2] − ac detM[N−3]. The determinant of matrix M[N−2]

is as a function of 1− b and −ac. Same principle for all the determinants of submatrices
of order n ≤ N − 2. However, all the main minors of the matrix M are written according
to 1− b and −ac just prove that they are strictly positive. Regarding 1− b as b ≤ 0 then
1− b > 0. We need to prove that −ac > 0. In the fact, we have r > σ2

2 (1 + 1
∆x ) + y, then

r − σ2

2 − y > σ2

2∆x , as r > σ2

2 (1 + 1
∆x ) + y, as a result r > σ2

2 + y so r − σ2

2 − y > 0,

we obtain (r − σ2

2 − y)2 ∆t2

4∆x2 − σ4∆t2

16∆x4 > 0. Finally we have −ac > 0 which prove that
M is a P−matrix.

4 Numerical results and discussion

The previous linear complementarity problem is rewritten using the following definitions
wm = Mpm − bm+1, zm = pm − pM , qm+1 = bm+1 −MpM to take the following form
wm = Mzm − qm+1, where wm

n ≥ 0, zmn ≥ 0 and wm
n .zmn = 0 for n = 1, ...., N − 1, and

we solved this LCP with the algorithm defined in Achik et al. (2020).
In this section, we present the results obtained for the theoretical evaluation of some

American options.
Tables 1–4 present the theoretical prices of American put options with well chosen

parameters.
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Table 1 Theoretical prices of American put options with E = 50 et y = 0

Parameters of option Price S Price of put option
σ = 0.1, y = 0, r = 0.08, T = 3 Months 40 13.58593

45 7.58757
50 4.82847
55 2.92694
60 0.73105

σ = 0.1, y = 0, r = 0.08, T = 6 Months 40 13.73088
45 7.88133
50 5.04984
55 2.96403
60 0.93261

σ = 0.1, y = 0, r = 0.08, T = 9 Months 40 13.78373
45 8.07311
50 5.19233
55 3.28880
60 1.16783

σ = 0.1, y = 0, r = 0.08, T = 12 Months 40 13.83644
45 8.19331
50 5.53081
55 3.67775
60 1.21886

The results obtained in this section considering the dividend payment with American put
options. The following parameters were used for Tables 1–4: Smax = 60; Smin = 40;
σ = 0.1 and r = 0.09. We see from Table 1 and Figure 1 that the put option value decreases
from 13.83644 to 0.73105 when the value of the underlying asset increases. Regarding
the value of put option as a function of time, we observe that the value increases but in a
slow manner. In Table 2, we see that (Figure 2) the values of the options are increased by
14.78233 to 1.44579 compared to Table 1 and always the values reduced according to the
underlying asset. Same notes for Table 3, see Figure 3, there is a decrease in values from
15.53908 to 2.52468 and increase over time. For Table 4 and Figure 4 we want to see the
impact of dividend payment on the value of put options, we see that if the dividend rate
increases the value of put option also increases. We will apply these results to the production
of ExxonMobil, it has the capacity to produce 6.3 million barrels of oil per day. The price
of a barrel is worth 45 $. If there is an anticipation of a drop of barel prices it can protect its
products by buying an American style put with the following characteristics (see Figure 5):

• Exercise price: 50$

• Maturity: March

• Put price: 5 $

• Quota: 567 000 000.

It pays the following amount: 5$ × 567,000,000, i.e., 2,835,000,000$.
Before the deadline:
It can at any time resell its put and close its position, with a gain or a loss depending on

the evolution of the market and the level of the premium of the put that the buyer bought.
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Table 2 Theoretical prices of American put options with E = 50 et y = 0.01

Parameters of option Price S Price of put option
σ = 0.1, y = 0.01, r = 0.08, T = 3 Months 40 14.37729

45 8.60162
50 5.80464
55 4.21726
60 1.44579

σ = 0.1, y = 0.01, r = 0.08, T = 6 Months 40 14.41384
45 8.80728
50 5.90012
55 4.43180
60 1.59519

σ = 0.1, y = 0.01, r = 0.08, T = 9 Months 40 14.44530
45 8.83438
50 6.14857
55 4.64194
60 1.73669

σ = 0.1, y = 0.01, r = 0.08, T = 12 Months 40 14.78233
45 9.23091
50 6.39398
55 4.84752
60 1.87087

Table 3 Theoretical prices of American put options with E = 50 et y = 0.02

Parameters of option Price S Price of put option
σ = 0.1, y = 0.02, r = 0.08, T = 3 Months 40 15.26232

45 9.61940
50 6.95023
55 5.32344
60 2.52468

σ = 0.1, y = 0.02, r = 0.08, T = 6 Months 40 15.37509
45 9.75302
50 7.16351
55 5.53846
60 2.56026

σ = 0.1, y = 0.02, r = 0.08, T = 9 Months 40 15.40961
45 10.07622
50 7.40842
55 5.66554
60 2.77848

σ = 0.1, y = 0.02, r = 0.08, T = 12 Months 40 15.53908
45 10.31356
50 7.74551
55 5.88627
60 2.98647

At maturity, two cases should be distinguished:

• First case: The barrel price went up. The barrel price rose above the exercise price of
50$. The put buyer will choose not to exercise the option. The put buyer will have
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lost the premium amount which corresponds to the cost of insurance against a fall in
the market, but the price of the barrel has increased.

• Second case: The price of the barrel fell. The barrel price is worth 40$. The option is
valued, and its price at maturity is equal to the difference between the exercise price
and the barrel price: 50$–40$ = 10 $, i.e., 5,670,000,000 $ in total for 567,000,000
barrel of oil. The put buyer can keep the prices of his barrels; he realises a profit of
2,835,000,000 $ (5,670,000,000 $ – 2,835,000,000$), ie the value of the option at
maturity minus the total amount of the premium paid). In this case, the option acts as
insurance which protects the value of the barrel in the event of a fall in the market.
This is called a hedging transaction: by paying a premium the investor has in some
way taken out insurance to protect him against market risk. Indeed, the profit made
on the option makes it possible to partially offset the latent loss on the shares.

Table 4 American put options prices with different values of time with E = 50

T y = 0 y = 0.01 y = 0.02

0.25 4.82847 5.80464 6.95023
0.5 5.04984 5.90012 7.16351
0.75 5.19233 6.14857 7.40842
1 5.53081 6.39398 7.74551

Figure 1 American put options prices with different values of the underlying asset with y = 0
(see online version for colours)

Figure 2 American put options prices with different values of the underlying asset with y = 0.01
(see online version for colours)
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Figure 3 American put options prices with different values of the underlying asset with y = 0.02
(see online version for colours)

Figure 4 American put options prices with different dividend rates (see online version for colours)

Figure 5 Graphical representation of the option exercise case (see online version for colours)

5 Conclusion

In this paper, we are interested in the Black-Scholes model by adding the dividend rate,
as we saw in the discussion that this rate makes a change on the put option price, more
precisely, the values of the American put option increase when the dividend rate increase,
and the values of the price reduced according to the underlying asset and increase according
to the time. Regarding the oil options, it was noted that these options are very useful to help
producers keep prices per barrel and to take advantage of the premium if there is a price
fluctuation.
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