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Abstract: Multi-modal brain MRI image fusion is one of the hottest discussed issues in the
current research of medical image processing and has a deep impact on brain science and
diagnosis. In this study, a fusion algorithm based on the joint bilateral filter (JBF) and the
non-subsampled shearlet transform (NSST) is proposed. First, the multi-modal brain MRI images
were decomposed by NSST and JBF models to derive the high-frequency component and energy
layer. Secondly, the corresponding energy layer images and high-frequency components are
fused. Thirdly, the inverse NSST transform is performed on the energy layer fusion image and
the high-frequency fusion image to obtain the ultimate fusion image. Finally, the algorithm
was evaluated using a publicly available brain dataset. The experimental results show that
the algorithm achieves good performance in terms of both subjective evaluation and objective
metrics.
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1 Introduction

Medical imaging technology is a way of assisting doctors in
visualising the internal structures of a patient’s body, with
many illnesses requiring medical imaging devices to reach
a diagnosis. The medical images obtained from different
imaging devices carry different information about the
condition and have different emphases, while certain modal
images present complementary information. Computed
tomography (CT) is more sensitive to compact structures,
including bone, and can clearly show organ structures
through its greyscale reflection of tissue density, but soft
tissues cannot be shown in detail (Li et al., 2020). Magnetic
resonance imaging (MRI), by contrast, shows anatomical
structural information about soft tissue structures due to
their high spatial resolution. Nevertheless, no information
about the metabolic activity of the body can be exhibited.
T1-weighted imaging in MRI precisely reflects anatomical
structures to some degree, while T2-weighted imaging
primarily furnishes details of tissue lesions (Li et al.,
2021b). Fusing the different modal images and retaining
the respective feature information can help doctors to
better understand the patient’s physical condition (James
and Dasarathy, 2014; Huang et al., 2020) and accurately
determine the diseased areas of the body. Multi-modal
medical image fusion (MMIF) (Hermessi et al., 2021) is a
gateway to accomplish this. Thus, multi-modal MRI image
fusion has a high research value and tremendous potential
(Hermessi et al., 2021).

Currently, multi-modal MRI image fusion algorithms
can categorise into three main groups: sparse representation
(SR) (Yang and Li, 2010; Zhu et al., 2018; Zhou et al.,
2019), deep learning (DL) (Liu et al., 2017b; Zhang
et al., 2020; Liu et al., 2017a), and multi-scale transform
(MST) (Yin et al., 2018; Zhu et al., 2019). Among
them, SR-based algorithms are mainly classified into two
groups: fixed dictionaries and dictionary learning-based
methods. The fixed dictionary has limited transformations
to cater to image content and application diversity,
and has the disadvantage of being time-consuming and
computationally complex (Yang and Li, 2010). Whereas
dictionary learning-based methods (Zhu et al., 2018; Zhou
et al., 2019) not only need longer training time, but may
also suffer from colour distortion. DL-based algorithms
are a hot research topic in computing and are widely

used in image fusion. According to research (Liu et al.,
2017b), the convolutional neural network (CNN) fusion
algorithm is the most suitable architecture for image
fusion. Zhang et al. (2020) presented a general image
fusion framework based on convolutional neural networks
(IFCNN). They utilised two convolutional layers to extract
salient features and selected fusion rules based on image
type. But DL-based algorithms are not only demanding
on the dataset, but also complex and time-consuming
to calculate, with cumbersome parameter settings. The
MST-based fusion algorithm decomposes the image to
different scales and resolutions to obtain sub-band images
containing different information types. Depending on the
sub-band type, different fusion rules are selected for image
fusion. This type of algorithm processes image information
in a way that is strongly similar to the way the human
visual system (HVS) (Li et al., 2017) perceives vision.
Zhu et al. (2019) constructed a medical image fusion
technique based on the non-subsampled contour wave
transform (NSCT) and designed a local Laplace energy
norm as a fusion rule for the high-frequency components.
But the MST algorithm has an inherent flaw in that
some useful information is inevitably lost in the process
of decomposition and reconstruction, failing to achieve
optimal fusion performance.

The filter fusion algorithm is very similar to the
MST-based algorithm. By giving weights to the different
signal components, it decomposes the image into a
structural layer containing rich gradient and small energy
information and an intensity layer containing pure energy
information. The filter fusion algorithm can achieve the
purpose of preserving edges and smoothing noise with
low computational complexity (Goyal et al., 2012). Kumar
(2015) used a cross bilateral filter (CBF) to extract detailed
images, then fused them by weighted averaging. But it
is generally effective in medical image fusion. Qin et al.
(2019) proposed a medical image fusion method based on
weighted least squares filtering. The algorithm preserves
the colour and edge structure well, but the texture layer
without processing is directly combined with the fused
sub-images, which can lead to unclear texture details.
Li et al. (2021b) proposed a multi-modal medical image
fusion algorithm based on joint bilateral filters and local
gradient energy (JBF-LGE). The algorithm decomposed
medical images into a structural layer containing rich
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details and an energy layer with pure intensity information,
and designed a local gradient energy (LGE) operator to
fuse the structural layer. But the contour lines of bone
structures in the fused images produced by this method
sometimes have inconsistent brightness. Li et al. (2021a)
also proposed an algorithm (JBF-SR) that decomposes
the image by JBF and uses an SR-based fusion rule
on the high-frequency components. The fusion rule was
obtained by training with the KSVD algorithm. Dictionary
training requires consideration of many parameters, such as
number, content, and iterations of training data. Although
the convergence speed of the KSVD algorithm has been
greatly improved, the training time is still long. As for
the non-subsampled shearlet transform (NSST), it has
better multi-resolution property, anisotropy and translation
invariance. From the perspective of approximation theory, it
is an optimal approximation, a ‘true’ sparse representation
of the image in all directions and scales, without the
need for dictionary training. Based on the above-mentioned
problems, this paper combines NSST and JBF techniques to
propose a new multi-modal medical image fusion algorithm.
The experimental results show that the proposed method
outperforms some advanced fusion algorithms in terms of
visual and objective evaluation.

To put it in a nutshell, the main contributions of this
paper are as follows:

• An improved multi-modal medical image fusion
algorithm is proposed. In the image decomposition
segment, we introduce the NSST transform and JBF
technique to propose a novel decomposition scheme.
We decompose the source image into an energy layer
containing pure energy information and a series of
high-frequency sub-bands, which well preserves the
texture information of the source image.

• The approach is quite versatile so that it is scalable to
other types of image fusion with good fusion
performance.

The remaining sections of this paper are scheduled as
follows. Section 2 provides a brief overview of the joint
bilateral filter (JBF) theory. Section 3 details the proposed
multi-modal medical image fusion algorithm. Section 4
undertakes substantial experiments, covering its setup,
discussion of experimental results, along with the extended
applications. Section 5 concludes the paper as well as the
subsequent work.

2 Joint bilateral filter

Bilateral filter (BF) (Tomasi and Manduchi, 2002)
smoothes and denoises an image while preserving its
edge information. Nonetheless, many bilateral filters can
accidentally exert a blurring effect while denoising,
resulting in partial loss of detail and structural information
in the image. In order to overcome the shortcomings
of bilateral filter, the JBF (Petschnigg et al., 2004) was

created. Joint bilateral filter quite resembles bilateral filter,
which can be described as a special example of a JBF.

Equation (1) is the formula for JBF representing the
filtered output value of image I at pixel p.

Jp =
1

wjbf
p

∑
q∈Ω

IqGs(∥p− q∥)Gr

(∥∥∥Ĩp − Ĩq

∥∥∥) (1)

where I denotes the source image and J is the output
image after the source image I has been filtered. And Ĩ is
the introduced guide map, normally a blurred image of its
source image I . Both p and q are pixel indices and q is the
pixel within the image window Ω centred on p. The size
of the image window Ω is usually 3. The Jp represents the
pixel value obtained by the filtered pth pixel of the source
image I , and Ip, Iq denote the pth pixel of the source image
I and the qth pixel within the image window Ω centred on
the pth pixel of the source image I , respectively. Similarly,
Ĩp, Ĩq represent the pth pixel of the guide image Ĩ and
the qth pixel within the image window Ω centred on the
pth pixel of the guide image Ĩ , respectively. Gs means the
kernel function for the spatial domain and Gr is denotes
the kernel function for the pixel range domain, namely the
weight distribution function, generally a Gaussian function.
wjbf

p indicates the normalised term and is calculated as
follows:

wjbf
p =

∑
q∈Ω

Gs(∥p− q∥)Gr

(∥∥∥Ĩp − Ĩq

∥∥∥) (2)

JBF actually introduces a guide map and takes it as the
basis for the value domain weight calculation. To be more
specific, the JBF filter kernel was formed to consider both
the greyscale similarity of neighbouring pixels in the guide
map Ĩ and the geometric closeness of neighbouring pixels
(Kumar, 2015). The formed filter kernel is then used to
filter the input source image I .

3 The proposed algorithm

Combining JBF and NSST, a new fusion algorithm is
proposed in this paper. The steps are divided into two
main steps: source image decomposition, and image fusion
reconstruction. Firstly, the multi-modal brain MRI images
are disaggregated by NSST to gain their low-frequency
and high-frequency components. Meanwhile, the source
images are decomposed into the energy layer and the
structure layer image by the technique of two-scale image
decomposition from the JBF model. And the high-frequency
component and the energy layer image which replaces
the low-frequency component are fused applying the
abs-max criterion. By the inverse NSST, it is available to
restructive the image at last. The schematic diagram of
the algorithm is displayed in Figure 1. The red dashed
boxes belong to the source image decomposition step,
while the blue dashed boxes represent step 2, namely
image fusion reconstruction. The legend is shown at the
bottom right, with different coloured arrows representing
the different operational steps. The dark blue represents
Gaussian blur, the yellow represents edge recovery, the light
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green represents the NSST decomposition and the purple
represents the NSST inverse conversion.

3.1 Source image decomposition

In this paper, a new decomposition scheme is proposed by
combining JBF and NSST techniques. The decomposition
scheme can be specifically divided into two parts,
JBF-based dual-scale decomposition and NSST multi-scale
decomposition. The algorithm first decomposes the source
image into an energy layer containing pure energy
information and a structure layer including rich gradient
and small energy information by JBF-based dual-scale
decomposition. Also, the source image is decomposed into
a low-frequency sub-band and a series of high-frequency
sub-bands (48) using the NSST transform. Finally, the
energy layer and high-frequency sub-bands are retained and
subjected to the NSST inversion transform to obtain the
final fused image.

3.1.1 The dual-scale decomposition based on JBF

Medical images are mostly greyscale images, unlike other
types of images that have greater colour information. What
is more, they are mainly single content information, without
as much content information as other types of images.
In summary, the main information in medical images is
luminance and detail, while the dual-scale decomposition
based on JBF is under the assumption that “greyscale and
gradient information are two of the key features of medical
images”, which is very suitable for the characteristics of
MRI images.

The dual-scale decomposition based on JBF is applied
to the dual-scale component separation technique (Li et al.,
2021b), which is an excellent method for performing
basis-detail information separation. The detailed process of
its action is shown in Figure 2.

It starts with smoothing and Gaussian filtering of the
source image. The smoothing process is calculated as
follows.

Rσ = Gσ ∗ I (3)

Gσ(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
(4)

where I is the input source image, Gσ represents
a Gaussian filter template with variance σ2, and Rσ

is the output of the smoothing process with standard
deviation σ. The σ2 denotes the scale (Lei et al., 2019),
and (x, y) indicates the position of the ranks of the
pixels. Through this measure, the smoothed image will
not contain information on structural scales smaller than
σ. Subsequently, a weighted average Gaussian filter is
employed to obtain the global blurred image, computed as
follows:

G(j) =
1

Zj

∑
i∈N(j)

exp
(
−∥j − i∥2

2σ2
s

)
I(i) (5)

Zj =
∑

i∈N(j)

exp
(
−∥j − i∥2

2σ2
S

)
(6)

Figure 1 The overview of the proposed algorithm (see online version for colours)
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where I and G denote the input image and the filtered
output global blurred image respectively, and Zj denotes
normalisation, while σS is the smoothing parameter. The
parameter i, j is the pixel index and N(j) represents the
local area of the jth pixel. Whereas i is a pixel within N(j).
G(j) denotes the pixel value of the output after the jth pixel
of the input image is filtered.

Figure 2 The schematic diagram of the dual-scale
decomposition based on JBF (see online version
for colours)

It is essential to mention that the global blurred image
cannot be used directly as an energy layer, but also needs to
undergo an edge recovery operation. In the edge recovery,
the JBF is introduced to keep the large-scale structure of the
image from being destroyed during the smoothing process.
Together with equations (1) and (2), the result after JBF is
calculated by the following equation.

J(j) =
1

Zj

∑
i∈N(j)

gd(i− j)gr(i− j)I(i) (7)

Zj =
∑

i∈N(j)

exp
(
−∥j − i∥2

2σ2
S

− ∥G(j)−G(i)∥2

2σ2
r

)
(8)

where J denotes the result image after the input image
has been filtered by the JBF. The parameter j is also
the pixel index, so J(j) represents the jth pixel value
after JBF of the incoming image. The σS and σr are
smoothing parameters. The σS is used to adjust the weight
value of pixels with larger spatial distance, and the σr is
the standard deviation of the similarity factor controlling
the greyscale range, which is used to adjust the weight
value of pixels with larger pixel differences. Their size
determines the filtering effect of the BF. And gd and
gr denote the spatial distance function and the intensity
range function respectively. According to the theory of
JBF, they set weights based on the distance between pixels
(i.e., geometric similarity) and intensity differences (i.e.,
greyscale similarity), respectively, calculated as follows.

gd(i− j) = exp
(
−∥j − i∥2

2σ2
s

)
(9)

gr(i− j) = exp
(
−∥G(j)−G(i)∥2

2σ2
r

)
(10)

With the above calculation, the edge recovery effect,
i.e., edge preservation, can be achieved. Ultimately, the
relationship between the energy layer, the structure layer
and the source image can be shown by equation (11).

S = I − J (11)

where S is the structural layer image, I denotes the source
image and J is the energy layer image, i.e., the outcome
of the JBF. The structure layer contains primarily details
of the source image, i.e., small-scale information (Li et al.,
2021b), including textures, details, small edges, etc.

3.1.2 The NSST multi-scale decomposition

As shown in Figure 1, with the proposed algorithm, both
source images A and B are also decomposed by NSST.
There are four levels of decomposition and the final
decomposition results in one low-frequency component and
48 high-frequency components at different scales, where
the first level of decomposition produces eight sub-bands,
the second level produces eight sub-bands, and the third
level produces 16 sub-bands and the fourth level produces
16 sub-bands.

Compared to the low-frequency images obtained
by NSST decomposition, the energy layer from JBF
decomposition contains more information and to some
extent includes some of the structural features. The
high-frequency component, on the other hand, usually
contains rich edge and texture information. Thus, the
proposed algorithm substitutes the low-frequency image
with the energy layer image as a way to improve the fusion
performance.

3.2 Image fusion reconstruction

After the above decomposition, we can obtain the new
low-frequency component and the NSST high-frequency
component. Since the NSST component has weak structure
and high intensity, we take the absolute value of the pixel
as the pixel’s activity and use the Abs-Max criterion for
NSST component fusion, which is calculated as follows.

FE = AE. ∗map+ m̃ap. ∗BE (12)

map(x, y) =

{
1, |AE(x, y)| > |BE(x, y)|
0, otherwise

(13)

where FE denotes the fused image of the energy layer, AE
and BE denote the energy layers of the two source images
respectively, and the map indicates the fusion coefficient.

For the NSST high-frequency component, as a rule, a
larger absolute pixel value means more active pixels in the
image, so the high-frequency coefficients are often used for
image fusion with the absolute maximum rule. Such is also
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the case with the proposed algorithm. The calculation is as
follows:

FH(i) =

{
AH(i), AH(i) ≥ BH(i)

BH(i), otherwise
(14)

where FH denotes the fused image of high-frequency
sub-bands. i represents the scale of high-frequency
sub-bands and the value range is [1− 48]. Namely, FH(i)
denotes the fused image of high-frequency sub-bands with
scale i. The AH and BH denote the high-frequency
sub-bands of the two source images, respectively. Finally,
the proposed algorithm performs the inverse NSST
transform of the new low-frequency component and the
high-frequency component, thus reconstructing the image to
obtain the final fused image.

4 Experiment

4.1 Experimental dataset

To verify the efficiency of the algorithm, 407 pairs of
multi-modal medical brain image pairs are selected for
the experiments in this paper. The image dataset was
obtained from The Whole Brain Atlas1, a medical brain
image dataset established by Harvard Medical School
(Dagley et al., 2017). Figure 3 shows nine pairs of
representative multi-modal medical images of the brain.
These source images were all from different imaging
devices and contained modality types such as CT, MR-T1,
MR-T1 enhanced, MR-T2, and MR positioning image.
We also randomly selected 398 pairs of images in The
Whole Brain Atlas dataset. There were 159 pairs of
CT and MR fusion types and 239 pairs of MR-T1
and MR-T2. The images belonging to MR-T1 and
MR-T2 fusion types were from normal brains, while
the images belonging to CT and MR fusion types
were from patients with cerebrovascular diseases (acute
stroke, hypertensive encephalopathy, multiple embolic
infarction, etc.) or neoplastic diseases (meningioma,
metastatic bronchogenic carcinoma, etc.) or infectious
diseases (cerebral toxoplasmosis, etc.). In addition, to
explain the generality of the algorithm, two pairs from each
of the IR-visible image dataset2 and the multi-focus image
dataset3 were selected to prove the fusion capability of the
proposed algorithm.

4.2 Fusion evaluation metrics

The objective evaluation metrics used in this paper are
information entropy (EN) (Meher et al., 2019), standard
deviation (SD) (Meher et al., 2019), feature mutual
information (FMI) (Cvejic et al., 2006), gradient-based
metric (QAB/F ) (Xydeas and Vladimir, 2000; Shen et al.,
2020), and the sum of the correlations of differences
(SCD) (Aslantas and Bendes, 2015). These five indicators
are evaluated quantitatively. Where the calculated value is
higher, the integration performance is superior.

Figure 3 Nine pairs of multi-modal medical images

(a) CT/MR (b)MR-T1/MR-T2 (c)MR-T1/MR-T2

(d)MR-T1/MR Positioning Image (e)CT/MR (f)MR-T1/MR-T2    

(g)CT/MR (h)MR-T1/MR (i)MR-T1/MR-T1 Enhanced

4.3 Ablation experiment

To verify the rationality of the proposed algorithm we
performed two ablation experiments.

The first ablation experiment verified the role of NSST
and JBF in the algorithm. The experiment first kept
the fusion rules consistent and compared the proposed
algorithm with the pure NSST algorithm and the JBF
algorithm for objective evaluation of the metrics, as shown
in Table 1. From Table 1, it can be seen that the
proposed algorithm performs best on the metric QAB/F ,
with all other metrics falling in between the JBF and
NSST algorithms. The EN , SD, and SCD values of
the proposed algorithm are slightly worse than those of
the JBF algorithm, but much better than those of the
NSST algorithm. Similarly, the FMI values are slightly
lower than those of the NSST algorithm, but much better
than those of the JBF algorithm. The experimental results
demonstrate that the proposed algorithm combines the
advantages of both NSST and JBF, and both of them are
improved within the proposed algorithm.

Table 1 Quantitative results of ablation experiment 1

Method EN SD FMI SCD QAB/F

Proposed 0.7867 0.3018 0.8824 1.4216 0.5902
JBF 0.8283 0.3080 0.8599 1.4929 0.4881
NSST 0.7810 0.2979 0.8833 1.3841 0.5830

The second ablation experiment demonstrated the
reasonableness of replacing the low-frequency component
of the NSST with the energy layer obtained from the JBF
decomposition. A consistent fusion rule is used for the
experiments, and Algorithm 1 is the proposed algorithm.
It replaces the low-frequency component of NSST with
the energy layer obtained by JBF decomposition, and
finally the energy layer obtained by JBF decomposition
with the high-frequency component of NSST is inverted
by NSST. Algorithm 2 replaces the high-frequency
components of NSST with the structural layer obtained
by JBF decomposition, and finally the structural layer
obtained by JBF decomposition and the low-frequency
components of NSST is performed as an inverse operation
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to obtain the final fused image. Likewise, we use the
fusion metric to measure the fusion performance as
shown in Table 2. As can be seen from Table 2,
the proposed algorithm (Algorithm 1) outperforms in all
evaluation metrics, especially in the metrics SD, QAB/F

and SCD, with values much better than the comparison
algorithm (Algorithm 2). In other words, the fusion of
the energy layer and high-frequency components was
superior to that of the structural layer and low-frequency
components. Therefore, it is more reasonable to replace the
low-frequency component of NSST with the energy layer
obtained by JBF decomposition.

Table 2 Quantitative results of ablation experiment 2

Method EN SD FMI SCD QAB/F

Algorithm 1 0.7867 0.3018 0.8824 1.4216 0.5902
Algorithm 2 0.7750 0.2823 0.8780 1.1180 0.5452

4.4 Experimental results and discussion

In this paper, the proposed algorithm is compared with
four other algorithms with better fusion results, namely
the IFCNN (Zhang et al., 2020), JBF-LGE (Li et al.,
2021b), NSCT (Zhu et al., 2019) and CBF (Kumar, 2015)
algorithms.

4.4.1 Subjective evaluation

It is well-known that the most straightforward way to
judge the fusion performance of a fusion algorithm is to
directly evaluate the fusion results visually through the
human visual system. Figures 4 and 5 show the fused
images obtained by different algorithms for four pairs of
multi-modal medical images. The source images in Figure 4
are CT and MR, and in Figure 5 are MR-T1 and MR-T2.
The red rectangular box zooms in on some areas to
visualise the detailed information in the image. Comparing
Figures 4 and 5, it can be seen that the fused images of the
CBF and IFCNN algorithms have lower overall brightness
and less energy information than the other fused images,
and the fused images of the NSCT algorithm have less
soft body texture information and blurrier edges than the
proposed algorithm. Comparing the detail enlarged area (red
rectangular box) in the second row of Figure 5, it can be
seen that the JBF-LGE algorithm fused image retains less
texture information than the proposed algorithm.

4.4.2 Objective evaluation indicators

Experiments were selected from 398 pairs of medical brain
images from The Whole Brain Atlas for fusion performance
evaluation experiments. The dataset is divided into two
main categories, CT and MR, MR-T1 and MR-T2. These
evaluation metrics are all positive, with higher values

associated with better fusion performance, and the specific
objective evaluation metric data is shown in Table 3. Each
fusion metric in the table is the average of 398 pairs of
source images, and the values shown in italic are the best
scores under that metric. A box-and-whisker diagram is also
drawn based on the objective evaluation metrics, as shown
in Figure 6. The box-and-whisker diagram consists of a
‘box’ and a ‘whisker’, representing the dispersion of the
data. The ‘box’ has a straight line representing the middle
of the sample, with the top and bottom bounds representing
the 75% and 25% values respectively. The two ’whiskers’
are the maximum and minimum values of the data, and
outlier points are generally plotted separately, with a ’+’.
In addition, the mean values of the objective evaluation
indicators are marked with a diamond.

Table 3 Mean values of objective evaluation metrics for 398
fused images

Method IFCNN JBF-LGE NSCT CBF Proposed

EN 0.8091 0.8668 0.8398 0.7543 0.8597
SD 0.2990 0.3316 0.3255 0.2772 0.3318
SCD 1.1639 1.2776 1.1873 0.8007 1.3016
QAB/F 0.5700 0.5436 0.5609 0.5711 0.5662

As can be seen from Table 3 and Figure 6, the proposed
algorithm in terms of the standard deviation (SD) and the
sum of the correlations of differences (SCD), is much
better than the three compared algorithms, IFCNN, NSCT
and CBF, and slightly superior to the JBF-LGE algorithm.
In terms of information entropy (EN) and gradient-based
metric (QAB/F ), the proposed algorithm ranked second and
was very slightly different from the best metric. On the
whole, the proposed algorithm appears to perform well on
the objective evaluation metrics and has an advantage over
all three of the selected comparison algorithms.

4.5 Other types of image fusion

The proposed algorithm has a high generalisation capability
that can be extended to other image fusion types. To
demonstrate its generalisation capability, we applied the
proposed algorithm to multi-focus image fusion and
infrared and visible (IR-VIS) image fusion types. The
specific fusion results are shown in Figures 7 and 8. In
Figures 7, Figures 7(a) and 7(b) are the infrared image and
the visible image, respectively. Figures 7(c)–7(g) are the
fused images obtained from IFCNN, JBF-LGE, NSCT, CBF
and the proposed algorithms, respectively. But in Figure 8,
Figures 8(a) and 8(b) are the source images with different
focal points, respectively.
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Figure 4 Fusion results of different methods on a pair of CT and MR images (see online version for colours)

Source CT             Source MRI                  IFCNN JBF-LGE                    NSCT                  CBF                      Proposed

Source CT             Source MRI                  IFCNN JBF-LGE                    NSCT                  CBF                      Proposed

Figure 5 Fusion results of different methods on a pair of MR-T1 and MR-T2 images (see online version for colours)

Source MR-T1        Source MR-T2               IFCNN                   JBF-LGE                  NSCT                       CBF  Proposed

Source MR-T1        Source MR-T2               IFCNN                   JBF-LGE                  NSCT                       CBF  Proposed

Figure 6 Box-and-whisker diagram of objective evaluation indicators for 398 pairs of the source image (see online version
for colours)
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Figure 7 IR-VIS fusion images under different algorithms

(a) Source Image A           (b) Source Image B               (c) IFCNN                         (d) JBF-LGE                     (e) NSCT                           (f) CBF                      (g) The Proposed 

(a) Source Image A           (b) Source Image B               (c) IFCNN                         (d) JBF-LGE                     (e) NSCT                           (f) CBF                      (g) The Proposed 

Figure 8 Multi-focus fusion images with different algorithms

(a) Source Image A           (b) Source Image B               (c) IFCNN                         (d) JBF-LGE                     (e) NSCT                           (f) CBF                      (g) The Proposed 

(a) Source Image A           (b) Source Image B               (c) IFCNN                         (d) JBF-LGE                     (e) NSCT                           (f) CBF                      (g) The Proposed 

It can be seen from Figures 7 and 8 that the proposed
algorithm performs well on other fusion types, successfully
retaining the feature information about the source image
pair, especially on the type of fusion of IR and VIS,
which is more in line with the human visual system.
From the fused results of the IR-VIS images, we can
observe that the fused images successfully retain the feature
information of both images. Comparing the first pair of the
multi-source images, Figures 7(c) to 7(g) reveal that the
proposed algorithm retains more information on the lawn
structure than the JBF-LGE algorithm, the CBF algorithm
and the IFCNN algorithm, but slightly less than the NSCT
algorithm. Comparing the second pair of the multi-source
images, especially the tree structure information, the
proposed algorithm has a better fusion effect. Overall, the
proposed algorithm preserves the structural information of
the image better than the other four compared algorithms in
terms of visual effect and has greater fusion performance.
Judging from the fusion results of the multi-focus images,
we can observe that the fused images successfully retain
the clear image information of both images. Comparing the
images in Figures 8(c) to 8(f) indicates that the fusion effect
of the proposed algorithm is almost the same as the other
four algorithms, making full use of the clear areas with
different focal points.

5 Conclusions

MRI image fusion assists doctors in their diagnosis
and treatment, playing a positive role in understanding

the patient’s internal physical condition and accurately
determining the area of the lesion. Because of its high
research significance, it is a current research hotspot in the
field of imaging.

A new improved algorithm for multi-modal MRI image
fusion based on JBF and NSST is proposed in this paper.
In this algorithm, we first perform NSST decomposition of
the original image, in which the low-frequency components
are replaced by the energy layer obtained from the
JBF-based dual-scale decomposition scheme, enriching the
low-frequency information and thus enhancing the fusion
performance. Three typical fusion algorithms were chosen
for the experiments in this paper, including two categories
of algorithms based on MST and deep learning. In
our experiments, we evaluated the fusion performance
qualitatively through direct observation of the fused images
by the human eye, as well as a quantitative comparison
using five commonly used metrics. As experimental results
show, the method outperforms some advanced fusion
algorithms in terms of subjective and objective evaluation.
Moreover, the method has great generality so that it can be
applied to other image fusion problems, such as multi-focus
image fusion and infrared and visible image fusion.
Alongside the great fusion performance and universality
is the long running time of the algorithm, especially for
high-frequency fusion, which needs to be further optimised
by studying the fusion rules of the algorithm.
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