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Abstract: The advances in cloud computing promote the problem in processing speed.
Computing resources in cloud play a vital role in solving user demands, which can be regarded
as workflows. Efficient workflow scheduling is a challenge in reducing the task execution time
and cost. In recent years, deep reinforcement learning algorithm has been used to solve various
combinatorial optimisation problems. However, the trained models often have volatility and can
not be applied in real situation. In addition, evolutionary algorithm with a complete framework
is a popular method to tackle the scheduling problem. But, it has a poor convergence speed. In
this paper, we propose a hybrid algorithm to address the workflow scheduling problem, which
combines deep reinforcement algorithm and evolutionary algorithm. The solutions generated by
deep reinforcement learning are the initial population in the evolutionary algorithm. Results
show that the proposed algorithm is effective.
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1 Introduction

With the progress in science and technology, people’s
demand for computing and storage resources is growing
rapidly. And, cloud computing can achieve their demand.
Large amount of computing resources are deployed in the
cloud computing centre to be provided to users on demand,
so as to realise resource sharing (Jia et al., 2021; Wang
et al., 2021). Among them, the user’s request is regarded as
a workflow, which can be abstracted as a directed acyclic
graph (DAG). A workflow is composed of a group of task
nodes with dependency relationship, that is, the child task
must receive all the data passed by the parent task before it
can start execution. Workflow scheduling is to map tasks in
the workflow to appropriate servers under certain goals and
constraints (Versluis and Iosup, 2021), which is an NP-hard
problem, and it is difficult to achieve optimal scheduling.

Heuristic algorithms (Sahni and Vidyarthi, 2018; Djigal
et al., 2021; Faragardi et al., 2020) are often used to
solve the workflow scheduling problem, which is to design
heuristic rules according to specific problem scenarios.
The logic of heuristic algorithms is simple and easy to
understand, and the calculation speed is fast. Common
heuristic algorithms include list-based scheduling, task
replication methods, and cluster-based scheduling (Verma
and Kaushal, 2015). Among them, Topcuoglu et al.
(2002) proposed heterogeneous earliest-finish-time (HEFT)
algorithm, which is one of the most popular list based
algorithm. However, the design of a high-performance
heuristic algorithm is very difficult and requires a lot of
trial and error and expert knowledge. In addition, most
heuristic algorithms can only obtain local optimal solutions,
and when the problem scenario (such as problems, goals,
constraints, etc.) changes, the heuristic rules need to be
redesigned. Evolutionary algorithm (EA) (Zhang et al.,
2022; Cai et al., 2021; Muteeh, 2021; Konda et al.,
2021) is another popular method to solve the workflow
scheduling problem, such as genetic algorithm (GA),
particle swarm algorithm (PSO), ant colony algorithm. EA
(Cui et al., 2021a, 2021b; Zhang et al., 2021) has a
unified algorithm frameworks, and improves the quality of
solutions through continuous iterative search. EA does not
require the construction of complex mathematical models.
Many problems in different scenarios can be solved by
adjusting the fitness function, and global optimisation can
be achieved by iteration. In particular, it is more suitable
for multi-objective problems.

Casas et al. (2018) proposed a GA-ETI algorithm to
address the workflow scheduling in cloud environment,
considering the task execution time and monetary cost. For

the order assignment and supplier selection and production
line scheduling in the cloud manufacturing environment,
Laili et al. (2020) used six multi-objective EA to integrated
scheduling. However, the initial population of most EAs
is generated randomly. Although this can increase the
diversity of the population, a poor initial population will
reduce the optimisation and convergence speed of the
algorithm. Aziza (2020) proposed a HEFT-GA algorithm
to solve the workflow scheduling in cloud environment,
which is a hybrid algorithm that the initial population
of GA consists of an individual generated by HEFT
and the rest individuals generated randomly. However,
for the same problem, HEFT can only produce a single
solution, which will reduce the diversity of the population.
Alipour (2018) proposed a hybrid algorithm to solve the
traveling salesman problem, which combined multiagent
reinforcement learning (RL) and GA. In this algorithm, the
initial solutions in GA are generated by Q-learning, which
is a kind of RL.

Recently, with the continuous development of machine
learning (ML), more and more research has been proposed
to solve the scheduling problem using learning-based
approaches (Bengio et al., 2021). RL (Sutton, 1998) is more
suitable than deep learning (DL) for solving scheduling
problems, because instead of learning a model from a
training set with labels, RL learns that from the feedback
information of the environment. This is crucial for solving
workflow scheduling problems. Because the workflow
scheduling problem is an NP-hard problem, it is not easy
or impossible to generate labels for high-quality scheduling
results. Ding et al. (2020) proposed a QEEC method based
on Q learning framework and queuing model to address
the task assignment and scheduling considering energy
consumption in cloud environment. Guo et al. (2021)
proposed a DeepRM Plus method to address the resource
management problem, which used deep RL and used
the imitate learning to speed up the model convergence.
However, they can not consider the task dependency. Tong
et al. (2020) proposed a DQTS method to address the task
scheduling in cloud environment, considering the makespan
and load balance. In this algorithm, a deep Q learning
framework was used.

In this paper, a hybrid algorithm combining deep RL
and EA is designed to solve the multi-objective workflow
scheduling problem. The main contributions of this paper
are:

1 A workflow scheduling model is built aiming to
minimise the completion time of the workflow and
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the execution cost, and the dependency relationship
between tasks is as the constraint.

2 In order to accelerate the convergence speed and
improve the algorithm optimisation, the workflow
scheduling solution generated by DQN is used as the
initial population of the EA, and NSGA-II is taken as
an example to introduce the hybird algorithm.

3 To verify the effectiveness of the algorithm, we use a
variety of real-world scientific workflows for
simulation experiments. Our proposed algorithm make
a comparison with the random initial population and
HEFT-based initial population on multiple EAs. The
simulation results show that our proposed algorithm is
superior to the other two methods in terms of the task
execution time and cost.

The rest of this paper is organised as follows. In Section 2,
the relevant theories of DRL and EAs are introduced. In
Section 3, a model of workflow scheduling is built. In
Section 4, we propose a hybrid algorithm for workflow
scheduling. Section 5 presents simulation experiments and
analyses the results. Section 6 gives the conclusions of this
paper and proposes future work.

2 Preliminaries

2.1 Deep RL

Workflow scheduling problem is a sequential decision
problem that maps tasks to appropriate servers. It can be
regarded as Markov decision process (MDP), and a decision
model is built. RL is based on the MDP framework. At each
decision step, the agent chooses an action in the current
state and gets a reward value, which is used to evaluate the
quality of the executed action. After the action is executed,
the agent enters the next state. Through the continuous
interaction between the agent and the environment, and the
continuous trial and error and learning process from the
feedback information, a series of optimisation strategies are
finally obtained.

The MDP is mainly composed of four important parts
(S, A, P , R), of which:

1 S: State space. S is mainly used to describe a set of
environmental states.

2 A: Action space. A is the set of all actions that can
be taken.

3 P : State transition probability. P is the probability of
transition from the current state to the next state.

4 R: Reward function. R is the evaluation value of the
action in the process of taking an action from the
current state to the next state.

When the state space of the problem is not very large,
the Q value can be stored by constructing a state-action
pair, and using RL based on Q-learning or SARSA to

solve the optimal scheduling problem (Watkins and Dayan,
1992). Among them, the typical Q value update formula of
Q-learning based RL is as follows:

Q(sk, ak)← Q(sk, ak)

+α
[
rk + γmax

a
Q(sk+1, ak)−Q(sk, ak)

]
(1)

where γ is the discount factor, and α is the learning rate,
and rk + γmaxa Q(sk+1, ak) is defined as the target value,
and rk + γmax

a
Q(sk+1, ak)−Q(sk, ak) is the deviation

between the target value and the Q value at decision step
k.

The advantage of the above algorithm is that it can
guarantee convergence in a finite decision step. The
disadvantage is that, on the one hand, it is not suitable for
large-scale scheduling problems. Because the state space
of large-scale scheduling problems is huge, the Q value
table will be too large, which is not conducive to storage.
On the other hand, when the state space is continuous, the
continuous space needs to be discretised, which will lead to
the omission of some important state information.

To overcome the above problems, a neural network is
used to generate an approximate function with parameters
instead of the Q value table. Through continuous training
of network parameters, the value function is optimised to
obtain the optimal scheduling strategy. Among them, the
typical representative is the DQN algorithm proposed by
Google DeepMind in 2015 with the background of game
training (Mnih et al., 2015). In addition, the algorithm
breaks the correlation between data from the following two
aspects:

1 Experience replay pool: During the training process in
the neural network, the training datas must be
independent and identically distributed. The datas
from the sequential decision-making are correlated,
which will cause the neural network to be unstable.
Experience replay pool is to store the data of each
learning in the experience pool. When the data in the
experience pool reaches a certain amount, the uniform
random sampling method is used to extract a certain
amount of data from the experience pool for network
training.

2 The target network: Traditional DRL is a simple
combination of DL and RL. DRL designs a neural
network to generate a Q value with a parameter ω
instead of the Q value table, and uses the idea of
constructing deviation in Q-learning to construct a
loss function. Finally, use the gradient descent method
to train the parameters. The loss function can be
expressed as:

L1(ω) = E(yk −Q(sk, ak;ω))
2 (2)

yk = rk + γmax
ak+1

Q(sk+1, ak+1;ω) (3)

Among them, yi is called the target value function.
Because the two parameters in formulas (2) and (3)
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are the same, it will cause the two value functions to
be correlated, which will lead to premature
convergence of the training and make the neural
model unstable.

For the above problem, DQN is to set a neural network to
generate a Q value with parameter ω (the neural network
is called an evaluation network). In addition, DQN also
designs a neural network to calculate the target value
function with parameter ω− (the neural network is called
the target network). The structure of the two networks is the
same, but the parameters are different. The parameter in the
evaluation network is updated every decision step, and is
copied to the target network every fixed decision steps. This
helps to eliminate the correlation between the two value
functions and makes the trained model more stable. The
loss function is expressed as:

L2(ω) = E(yk −Q(sk, ak;ω))
2 (4)

yk = rk + γmax
ak+1

Q(sk+1, ak+1;ω
−) (5)

3 Problem formulation

In the cloud data centre, a set of servers are deployed, and
can be represented by Q, Q = {q1, q2, ..., qm}. A workflow
is executed in a cloud data centre, thus, the average
bandwidth can be used to represent the bandwidth between
each two servers. The number of CPUs and memory size
of each server are different, thus, the computing capacity
for each server is different. We use the CU to represent the
computing capacity in this paper. On-demand provisioning
is adopted in the cloud environment, that is, users only pay
the provider according to their required resources and time
slots.

A workflow abstracted as a DAG is comprised of a
set of edges D and tasks T . A set of tasks is defined
by T = {t1, t2, ..., tn}, and a set of edges is defined by
D = {dij |i ̸= j, i, j ∈ {1, 2, ..., n}}, where dij represents
the output data size from task ti to tj . If dij is zero, then
the two tasks have no dependency relationship. Otherwise,
task ti is the father task of task tj , and tj is the son task
of task ti. The task without any father task is defined as
t enter, and the task without any son task is defined as
t entry. A workflow with ten tasks is shown in Figure 1.

In this paper, workflow scheduling is to map all tasks in
a workflow to servers in the cloud environment, aiming to
minimise the task execution time and the resource operation
cost. However, they are two opposing goals, because the
server with a higher computing capacity often has a higher
cost. The two goals are defined as follows.

1 Makespan:The task execution time is also called the
makespan, which is the finishing time of the last task.

makespan = max
i∈[1,n]

FT (ti, qj) (6)

where FT (ti, qj) is the finish time of the task ti on
the server qj .

Figure 1 A workflow with ten tasks

2 Cost: Servers executing all tasks need to speed time,
and each server has different charge price. In addition,
data transfer also needs to pay. Thus, the cost is
defined by

cost1 =
m∑
j=1

n∑
i=1

(FT (ti, qj)− ST (ti, qj))xijpj (7)

xij =

{
1, if task ti in server qj
0, otherwise (8)

where ST (ti, qj) and FT (ti, qj) are the start and
finish time of the task ti on the server qj , and pj is
the price of server qj .

cost2 =
n∑

i=1

TM(ti, tj)p
′ (9)

TM(ti, tj) =


0, if ti and tj in the

same server
dij

bw , otherwise
(10)

where bw is the average bandwith, and TM(ti, tj) is
the data transfer time, and p′ is the price of data
transfer time.

Thus, the cost can be defined by

cost = cost1 + cost2 (11)
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4 Algorithm description

4.1 Workflow scheduling based on deep RL

Firstly, we define the MDP of workflow scheduling,
including state space, action space, reward and state
transition process.

1 State space: At each decision step, the state of
workflow scheduling is defined as the input of neural
network. And, the definition of state space can reflect
the execution of tasks and the state of servers. At the
current time, each server load and the the load
standard deviation are included in the state space.

2 Action space: For each task, we need to determine
which server is used to execute it. Thus, all servers
consist of action space. To balance the exploitation
and exploration, ξ-greed is used to select actions.

3 Reward: The goal is to minimise the makespan and
reduce the cost, and reward function should reflect to
the two goals. Two rewards are defined by

Reward1 =
makespan(sk)−makespan(sk+1)

makespan(sk+1)
(12)

Reward2 =
cost(sk)− cost(sk+1)

cost(sk+1)
(13)

Reward = Reward1 +Reward2 (14)

where sk is the state at decison step k, and sk+1 is
the state at decision step k + 1.

4 State transition process: For a workflow, first, we use
the updating ranking (Topcuoglu et al., 2002) to
generate a task list. And, at the current state, a task is
selected in order of the task list. Then, an action is
determined for this task. We can obtain the reward
after executing this action, and the environment
information is updated to the next state. An episode
refers that all tasks in a workflow are allocated.

5 The parameter training process

Based on Subsection 2.1, the pseudo-code of the workflow
scheduling based on DQN is as Algorithm 1.

4.2 Workflow scheduling based on NSGA-II

For the solution of MOPs, as early as 1994, Srinivas and
Deb (1994) proposed the non-dominated sorting genetic
algorithm (NSGA). Compared with GA, NSGA adopts the
strategy of non-dominated stratification and fitness sharing,
which can give good individuals a better chance to reach
the next generation, and obtain a more evenly distributed
pareto optimal solution set. However, NSGA also has some
disadvantages:

1 During the non-dominated sorting, multiple searches
are generally required, and the number of searches

will increase with the increasing number of goals (l)
and the size of the population (N ). This results in a
relatively high time complexity O(lN3);

2 Lack of elite strategy. The elite strategy can retain
good individuals and accelerate the convergence of
the Pareto front.

3 You need to specify special sharing parameters
yourself, which have a relatively large impact on the
diversity of the population.

Algorithm 1 Workflow scheduling based on DQN
Input: Episode number Num; Minebatch size B; Replay

memeory size M
Output: Parameter ω and ω−

Initialise state space
Ep = 0
while Ep < Num do

task list ← updating ranking
Ep += 1
for ti in task list do

ak =

{
argmax

a
Q(sk, a;ω), probability ∈ [0, ξ]

randomly, probability ∈ (ξ, 1]

next state sk+1 and reward rk
store < sk, ak, rk, sk+1 >
sample < sk, ak, rk, sk+1 > with B
if ti is last task then

yk = rk
end
else

yk = rk + γmax
ak+1

Q(sk+1, ak+1;ω
−)

end
L(ω) = E(yk −Q(sk, ak;ω))

2

update ω ← gradient descent
update ω− ← ω (every h step)

end
end
Return(ω and ω−)

Therefore, in 2002, Deb et al. (2002) improved NSGA and
proposed a NSGA with elite strategy (NSGA-II). Compared
with NSGA, this algorithm has the following advantages:

1 It proposes a fast non-dominated sorting algorithm,
which reduces the time complexity to O(lN2).

2 It joins the elite strategy to ensure that the best
individuals will not be lost. This improves the overall
level of the population.

3 It adds a crowding operator and does not need to
determine a shared parameter. This ensures the
diversity of the population.

This paper takes the NSGA-II algorithm as an example and
describes its combination with DQN to solve the workflow
scheduling problem.

For the workflow scheduling, a chromosome (or an
individual) can be represented by a complete workflow
scheduling solution. And, the gene in the chromosome
indicates a task. The value on the gene is the VM number.
A population consists of multiple chromosomes, that is, a
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population is comprised of multiple workflow scheduling
solution.

The basic idea of NSGA-II is as follows.
Firstly, the initial population of scale N is generated

randomly, and the first generation offspring population
is obtained by three basic operations of GA: selection,
crossover and mutation after non-dominated sorting;
secondly, starting from the second generation, the parent
population and the offspring population are merged for
fast non-dominated sorting, and at the same time, the
crowding degree of individuals in each non-dominated layer
is calculated, and suitable individuals are selected according
to the non-dominated relationship and the crowding degree
of individuals forms a new parent population; finally, a
new offspring population is generated through the basic
operation of GA; and so on, until the conditions for ending
the program are met.

The different between the NSGA-II and the proposed
algorithm in this paper is about the initial population
generation. In this paper, all workflow scheduling solutions
in the initial population are generated by DQN. Firstly,
we train the neural network for a fixed episodes and save
the model. Then, for a special workflow, we invoke the
saved model and iterate N episode, which can generate
N solutions. During this process, the parameter of neural
network is still changed at each episode, which can generate
various solutions. The flowchart of the proposed hybrid
algorithm is in Figure 2.

Figure 2 The flowchart of the proposed hybrid algorithm
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4.3 Time complexity analysis

For the NSGA-II with a randomly generated initial
population, the time complexity is mainly from the
fast non-dominated sorting. And, the time complexity is
O(lN2), where l is the number of goals and N is the size of
population. If the initial population of NSGA-II is generated
by DQN, the time complexity is still O(lN2). Firstly,
for a special workflow, DQN can generate a solution
through n iterations. Thus, the time complexity of the
initial population generated by DQN is O(nN), which is
far less than O(lN2). To sum up, the NSGA-II with the
initial population generated by DQN does not increase the
computing time cost.

5 Simulation evaluation

5.1 Experimental setting

5.1.1 Workflow and server parameter setting

Synthetic workflows from the real-world scientific
applications are utilised to evaluate the algorithm
performance, which are published by Pegasus project.
In this work, three workflow types are used to be the
experiment data, including montage, cybershake, and
inspiral. Workflows in a workflow types have the similar
structure but different task numbers. To test the algorithm
stability, a different number of tasks in each type of
workflows are selected. Each workflow is expressed by an
XML file, which consists of each task length, the input and
output data size of each task, and the DAG structure.

Table 1 The computing capacity and price of each server

Sever Computing capacity Price

q1 1.7 0.06
q2 3.75 0.12
q3 3.75 0.113
q4 7.5 0.24

Table 2 Parameter setting

Parameters Description Value

γ Discount factor 0.9
α Learning rate 1 × 10−6

ξ ξ-greed 0.9
M Replay memory size 1 × 106

B Minebatch size 128
Num Episode number 10,000
N Population size 100
I Iteration 300

Four server types from Amazon EC2 instances are selected,
and Table 1 describes the computing capacity and price of
each server. The average bandwidth between VMs is set to
be 10 MB/S, and the data transfer price (p′) is 0.1.

Other parameters about evolutionary and DQN are as
Table 2.
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Table 3 Makespan of real-world workflow scheduling by
NSGA II

Metric Workflows R NSGA II H NSGA II D NSGA II
Best Montage 50 2.5680 1.3013 1.2667

Montage 100 2.0347 2.0347 1.8427
Cybershake 50 0.6933 1.3000 0.5941
Cybershake 100 23.6980 0.6013 0.8133

Inspiral 50 101.6600 101.6560 101.6560
Inspiral 100 37.3910 39.6480 56.2107

Worst Montage 50 37.3240 50.9090 37.5176
Montage 100 66.9150 57.6621 628.2893
Cybershake 50 235.4400 271.3570 238.7641
Cybershake 100 496.2000 540.7445 368.6267

Inspiral 50 1,114.7000 746.9784 737.1471
Inspiral 100 755.6400 1,522.0233 1,179.1020

Mean Montage 50 16.7790 15.7654 16.8382
Montage 100 23.1400 18.8548 153.5838
Cybershake 50 238.7640 123.3277 111.3251
Cybershake 100 218.2200 200.6230 159.1581

Inspiral 50 238.4300 3,323.2568 276.0462
Inspiral 100 298.7600 366.2463 360.2245

Table 4 Cost of real-world workflow scheduling by NSGA II

Metric Workflows R NSGA II H NSGA II D NSGA II
Best Montage 50 54.2600 53.6223 54.4554

Montage 100 113.3400 112.2100 107.1777
Cybershake 50 317.6100 322.3612 318.9448
Cybershake 100 727.3200 726.2047 698.8867

Inspiral 50 1,049.1000 1,048.4322 1,040.5970
Inspiral 100 1,881.7000 1,877.5974 1,864.5670

Worst Montage 50 54.8030 54.1568 55.0043
Montage 100 114.4700 113.338 108.2518
Cybershake 50 320.7400 325.5517 322.1190
Cybershake 100 734.5500 726.2047 705.9314

Inspiral 50 1,059.5000 1,058.8664 1,050.9814
Inspiral 100 1,900.6000 1,896.2901 1,883.3272

Mean Montage 50 54.5320 53.8899 54.7296
Montage 100 113.9100 112.7750 107.7152
Cybershake 50 319.1800 323.9500 320.5323
Cybershake 100 730.9300 729.8180 702.4213

Inspiral 50 1,054.3000 1,053.6500 1,045.7917
Inspiral 100 1,891.2000 1,886.9315 1,873.9451

Table 5 Makespan of real-world workflow scheduling by
NSGA III

Metric Workflows R NSGA III H NSGA III D NSGA III
Best Montage 50 1.3013 1.4320 1.3013

Montage 100 2.0347 2.0347 1.8427
Cybershake 50 16.4570 0.6880 0.5176
Cybershake 100 4.1157 0.5882 1.2347

Inspiral 50 104.9200 101.6560 127.3173
Inspiral 100 91.1710 68.3973 120.3657

Worst Montage 50 57.9900 50.9090 30.8942
Montage 100 58.9360 93.7136 628.1010
Cybershake 50 303.6000 324.7011 228.9518
Cybershake 100 577.3000 537.4717 347.0301

Inspiral 50 877.5600 1,114.1294 842.0193
Inspiral 100 996.8100 831.1279 1,091.6282

Mean Montage 50 15.4412 16.7146 18.0710
Montage 100 21.0900 22.5713 205.1678
Cybershake 50 124.6900 123.1372 123.4762
Cybershake 100 235.8800 194.2094 168.6120

Inspiral 50 280.4600 330.3970 407.8018
Inspiral 100 332.8100 356.9950 387.3123

Table 6 Cost of real-world workflow scheduling by NSGA III

Metric Workflows R NSGA III H NSGA III D NSGA III
Best Montage 50 54.3300 53.5938 54.2049

Montage 100 113.1500 112.0050 106.3586
Cybershake 50 317.5400 318.7685 317.8310
Cybershake 100 725.4700 722.1321 697.8720

Inspiral 50 1,047.1000 1,047.9112 1,040.7192
Inspiral 100 1,880.2000 1,876.9745 1,865.0962

Worst Montage 50 54.8720 54.1276 54.7461
Montage 100 114.2800 113.1200 107.4227
Cybershake 50 320.7200 321.9906 320.9870
Cybershake 100 732.6800 729.3767 704.7685

Inspiral 50 1,057.6000 1,058.3639 1,051.0862
Inspiral 100 1,899.1000 1,895.8292 1,883.6782

Mean Montage 50 54.6010 53.8610 54.4744
Montage 100 113.7100 112.5622 106.8907
Cybershake 50 319.1300 320.3761 319.4048
Cybershake 100 729.0700 725.7479 701.3274

Inspiral 50 1,052.3000 1,053.1340 1,045.9039
Inspiral 100 1,889.7000 1,886.4045 1,874.3881

Table 7 Makespan of real-world workflow scheduling by RV EA

Metric Workflows R RVEA H RVEA D RVEA

Best Montage 50 1.2667 2.5680 1.3013
Montage 100 2.5600 2.8747 1.8427
Cybershake 50 0.7253 0.9235 0.5824
Cybershake 100 0.4118 0.6941 0.4941

Inspiral 50 63.6590 63.6590 72.3490
Inspiral 100 66.9470 68.3970 34.1990

Worst Montage 50 51.1860 126.9100 53.7450
Montage 100 77.1030 62.5250 628.1900
Cybershake 50 526.4800 351.4400 290.7500
Cybershake 100 567.4300 597.1100 599.9900

Inspiral 50 1,256.2000 846.6700 896.3100
Inspiral 100 1,385.5000 1,076.8000 1,146.4000

Mean Montage 50 16.7090 20.7000 15.3550
Montage 100 21.0200 21.1580 134.8600
Cybershake 50 133.4600 114.7400 109.9700
Cybershake 100 231.1800 230.4200 200.2700

Inspiral 50 248.4200 307.1800 350.6600
Inspiral 100 373.6800 347.4900 299.1100

Table 8 Cost of real-world workflow scheduling by RV EA

Metric Workflows R RVEA H RVEA D RVEA
Best Montage 50 53.6290 52.8080 53.5400

Montage 100 112.9100 111.3400 107.3300
Cybershake 50 317.1500 319.2700 321.5900
Cybershake 100 715.9900 720.6200 693.8500

Inspiral 50 1,049.1000 1,052.5000 1,038.2000
Inspiral 100 1,876.4000 1,870.4000 1,861.9000

Worst Montage 50 54.1700 53.3420 54.0820
Montage 100 114.0300 112.4400 108.4100
Cybershake 50 320.3400 322.4600 324.8000
Cybershake 100 723.1600 727.7800 700.7700

Inspiral 50 1,059.7000 1,063.0000 1,048.6000
Inspiral 100 1,895.1000 1,889.2000 1,880.5000

Mean Montage 50 53.8990 53.0750 53.8110
Montage 100 113.4700 111.8900 107.8700
Cybershake 50 318.7500 320.8700 323.1900
Cybershake 100 719.5900 724.2100 697.3100

Inspiral 50 1,054.4000 1,057.8000 1,043.4000
Inspiral 100 1,885.8000 1,879.8000 1,871.2000
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5.1.2 Baseline algorithms

Three EAs are selected, including NSGA-II, NSGA-III and
RVEA. And, the two generation methods of the initial
population are used for comparative experiments. The first
one is that the initial population is generated randomly.
The second one is that the initial population consists of
an individuals generated by HEFT and the rest individuals
generated randomly. And, the different generation methods
of the initial population and EA are combined to produce
a new method. For example, R NSGA II represents the
generation method of the initial population in NSGA II is
random. H NSGA II represents the generation method of
the initial population in NSGA II is HEFT and random.
And, D NSGA II represents the generation method of the
initial population in NSGA II is DQN.

5.2 Simulation results and analysis

Under different real-world workflows, Tables 3 and
4 show the makespans and cost using R NSGA II ,
H NSGA II and D NSGA II . Tables 5 and 6 show the
makespans and cost using R NSGA III , H NSGA III
and D NSGA III . Tables 7 and 8 show the makespans
and cost using R RV EA III , H RV EA III and
D RV EA III . For each goals, we can obtain the
maximum (best), average (mean), and minimum (worst)
value for each workflow by three algorithms. Among them,
the best result is highlighted by black.

For the same EA, the results show that our proposed
algorithm can obtain better values in terms of makesppan
and cost. Sometimes, the results by our algorithm are not
the best. That is because the two goals are contradictory,
and it is necessary to sacrifice one for another. Overall,
for the generation methods of three initial populations, the
performance of the proposed algorithm in this paper is
better than the other two algorithms.

6 Conclusions

In this paper, a hybrid algorithm is proposed to address
the workflow scheduling problem, aiming to minimise the
task execution time and cost. In this algorithm, deep RL
and EA are combined, that is, the initial population in EA
is generated by deep RL. Three real-world workflow types
are used to be the dataset. Different generation methods of
initial population are set and combined with different EAs
to verify the performance of the algorithm. Results shows
that our proposed algorithm is effective.

However, it may be more than two objective for the
workflow scheduling in the cloud environment. In the
future, we will consider the many-objective workflow
scheduling.
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