

International Journal of Security and Networks

ISSN online: 1747-8413 - ISSN print: 1747-8405
https://www.inderscience.com/ijsn

A slice-based encryption scheme for IPFS

Changsong Zhou, Guozi Sun, Xuan You, Yu Gu

DOI: 10.1504/IJSN.2022.10047182

Article History:
Received: 02 January 2022
Accepted: 20 January 2022
Published online: 03 April 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijsn
https://dx.doi.org/10.1504/IJSN.2022.10047182
http://www.tcpdf.org

42 Int. J. Security and Networks, Vol. 18, No. 1, 2023

Copyright © 2023 Inderscience Enterprises Ltd.

A slice-based encryption scheme for IPFS

Changsong Zhou
School of Computer Science,
Nanjing University of Posts and Telecommunications,
Nanjing, 210023, China
Email: eric_zhou97@163.com

Guozi Sun*
School of Computer Science,
Nanjing University of Posts and Telecommunications,
Nanjing, 210023, China
and
Key Laboratory of Urban Land Resources Monitoring and Simulation,
MNR, Shenzhen 518000, China
Email: sun@njupt.edu.cn
*Corresponding author

Xuan You and Yu Gu
School of Computer Science,
Nanjing University of Posts and Telecommunications,
Nanjing, 210023, China
Email: you3xuan@163.com
Email: 243477384@qq.com

Abstract: The interplanetary file system (IPFS) has been used more and more widely because of
its advantages of smooth integration with the current blockchain platform and its advantages as a
distributed file system. However, the authors found that IPFS has some privacy issues; it cannot
completely avoid unauthorised access to data by malicious nodes. In response to this problem,
the authors propose a lightweight encryption scheme based on the characteristics of IPFS file
slicing combined with AES256 and SHA256, which can be smoothly integrated into IPFS.
During the upload process, this scheme encrypts some sliced file blocks according to the strategy
formulated by the user. During the download process, the encrypted block is identified and
decrypted according to a special encryption method. Through this scheme, the system can
increase file security without affecting the performance of IPFS itself and retain the
deduplication effect of IPFS to the utmost extent.

Keywords: advanced encryption standard; AES; SHA256; blockchain; distributed storage;
security; Merkle DAG; interplanetary file system; IPFS; slice; deduplication.

Reference to this paper should be made as follows: Zhou, C., Sun, G., You, X. and Gu, Y.
(2023) ‘A slice-based encryption scheme for IPFS’, Int. J. Security and Networks, Vol. 18, No. 1,
pp.42–51.

Biographical notes: Changsong Zhou is a post-graduate student in the School of Computer
Science, Nanjing University of Posts and Telecommunications. His research interests include
blockchain, IPFS, distributed storage, and cybersecurity. He participated in the development of
blockchain file management system, DFPP laboratory and other projects. Currently, he is
engaged in IPFS cluster technical support and research.

Guozi Sun is a Professor at the School of Computer Science, Nanjing University of Posts and
Telecommunications. He received his PhD from Nanjing University of Aeronautics and
Astronautics in 2002, entered the post-doctoral station of Tsinghua University in 2003, and
returned to Nanjing University of Posts and Telecommunications after leaving the post-doctoral
station in 2005. His research interests include computer communication networks and security,
blockchain forensics, digital forensics and digital investigation. He has published more than 60
scientific papers and has co-authored two monographs on digital forensics.

Xuan You is a post-graduate student in the School of Computer Science, Nanjing University of
Posts and Telecommunications. His research interests include blockchain infrastructure,
blockchain security, distributed storage, cybersecurity and cloud native. He participated in the

 A slice-based encryption scheme for IPFS 43

development of blockchain file management system, DFPP laboratory and other projects.
Currently, he works on fabric applications.

Yu Gu is a post-graduate student in the School of Computer Science, Nanjing University of Posts
and Telecommunications. His research interests include blockchain forensics, cybersecurity and
digital forensics. He participated in the development of blockchain file management system,
DFPP laboratory and other projects. He is familiar with electronic forensics and the underlying
technology of blockchain and has participated in the translation of many related technical books.

1 Introduction
With the further expansion of network scale, the problems
brought by centralised system become increasingly serious.
Centralised systems are vulnerable to single points of failure
or external attacks from malicious actors, who may disclose
data or confidential information. The situation becomes
worse when user privacy is involved, which may lead to
adverse effects. Besides, excessive server and bandwidth
costs also make people more inclined to use distributed data
storage systems. Therefore, the related research directions
such as distribution and decentralisation have attracted
extensive attention and research.

The interplanetary file system (IPFS) (Benet, 2014) is
one of the most representative distributed data storage
systems. However, the reason that makes IPFS a real
research hotspot is the blockchain. The blockchain has to
upload data to the public blockchain, which may cause
scalability and privacy issues (Politou et al., 2019). In fact,
it is not advisable to put a large amount of data in a
blockchain transaction because of the high cost involved. In
this case, when the node needs to download the entire
ledger, there will be a delay problem. Moreover, the original
advantages of the blockchain such as immutability and
transparency will also cause problems when it comes to
private data. Therefore, the combination with IPFS is
currently a relatively complete solution.

IPFS uses many mature technologies, including
distributed hash table (DHT) (Maymounkov and Mazières,
2002), BitTorrent (Cohen, 2003), GIT and SFS (Mazières,
2000), and simplifies and modifies them into a single
cohesive system, but not just the sum of its parts. Due to the
smooth integration of IPFS with the current blockchain
platform, it is widely used for extended storage outside the
chain, which has led to its widespread adoption by many
blockchain projects to solve the problem of insufficient
storage space on the chain.

However, IPFS has security problems (Politou et al.,
2020). It does not provide access control at the connection
level to restrict untrusted peers from obtaining unauthorised
data, which means anyone holding the CID can obtain the
corresponding content from the network.

Most of the work on IPFS has been dedicated to using
IPFS as distributed data storage to develop distributed
applications (DAPP), but the security of private data has not
been considered seriously. The few papers (Hoffman et al.,
2020; Ali et al., 2017; Xu et al., 2018 Li, 2018; Lin and
Zhang, 2021) on security issues mostly increase the security
of files from the direction of access control, and only a few

papers (Sun et al., 2020; Pham et al., 2020) try to study
from the perspective of encrypting file objects. However,
these solutions still have problems such as heavy workload
and complicated implementation. In addition, this also
makes IPFS lose the characteristic attribute of
deduplication. Therefore, the authors attempt to improve
IPFS while retaining all the functions of the original IPFS
without affecting the deduplication effect and without
affecting the network performance, and provide users with
the option of increasing file security at the expense of
slightly increasing the workload.

The rest of this article is structured as follows. In the
Section 2, the authors will review related works. Section 3
proves that there are data security issues on IPFS storage
nodes. Section 4 introduces methods to protect data
security. The specific methods and results of the experiment
are given in Section 5, followed by conclusions and
prospects for the future.

2 Background
IPFS (Benet, 2014) is a network transfer protocol that can
create persistent and distributed storage and file sharing. Its
goal is to replace hypertext transfer protocol (HTTP) to
provide users with better network services. Above the
routing and switching layer, IPFS uses Merkle DAG and
hash to achieve deduplication of the entire network
(including fragmentation) to prevent tampering and because
the entire node maintains a DHT, the entire network can be
realised without a server and connect all the idle storage
devices together to make full use of hardware resources. At
the same time, since that it is a distributed system, it is easy
to dynamically expand the storage space. With reference to
the P2P protocol, at the exchange layer, once a node
establishes a connection, IPFS will use the BitSwap
protocol to control data transmission. Combining the idea of
git version control, IPFS constructs an encrypted
authentication data structure to support file version control
and efficient distribution. It uses the SFS self-verifying file
system to verify the server (to achieve a private network)
and establish a secure communication channel to the remote
file system.

Recently, there are many applications about IPFS. In
2020, Hoffman et al. designed a DAPP, which uses the
smart contract system based on Ethereum and IPFS storage
mode for testers. The smart contract model provides a
secure and transparent platform for the bug bounty program.
Testers will submit the bug they find through the

44 C. Zhou et al.

blockchain, and the company will accept or reject the bug
through the blockchain. In 2017, Ali et al. proposed a
modular alliance architecture based on blockchain and IPFS
to solve the problem of data privacy on the Internet of
things, which not only solves the disadvantage that the
traditional blockchain network cannot store massive
amounts of data, but also avoids the centralised
management mode of IOT data. In 2018, Xu et al. proposed
a social media application based on Ethereum and IPFs, in
which Ethereum is used to save user data and IPFS is
adopted to save large file data. This not only ensures the
integrity and authenticity of user data, but also solves the
redundancy problem caused by a large scale of file storage.
In 2021, Lin and Zhang proposed a privacy protection
method based on blockchain and improved IPFS. This
method uses blockchain to store file information and user
permissions. The improved IPFS can control file data
sharing according to user permissions. At the same time,
they expand the user group and file directory management
function based on smart contract. Through this method,
users can centrally manage the shared users in the system,
organise file directories efficiently, and protect private files
at the same time.

Many of the above applications use IPFS, and some
applications provide access control in order to solve the
security problem. However, only providing access control,
the file still has security problems, which will be proved and
described in the next chapter.

In 2020, Sun et al. combined blockchain technology to
build an attribute-based encryption scheme for secure
storage and efficient sharing of electronic medical records
in IPFS storage environment. The scheme is based on
ciphertext policy attribute encryption, which can effectively
control the access of electronic medical data without
affecting the efficient retrieval. It is feasible to use
attribute-based encryption scheme to deal with small and
high privacy files such as user cases, but this method is not
suitable for large files.

In order to enhance the security and transparency of
distributed storage system, in 2020, Pham et al. proposed
the combination of IPFS, attribute-based encryption (ABE),
multi-authority ABE (MA-ABE) and Ethereum blockchain.
In this case, it may be necessary to encrypt large files,
which will complicate the system and make the IPFS lose
its deduplication effect. As more and more files need to be
stored, the encryption time will be too long, which will
seriously affect the use experience.

3 Problem description and verification
This section will explain why only access control is not
enough, that the file object must be encrypted. First of all, it
is necessary to understand where the file exists in the IPFS
network, which will be demonstrated as the storage node
mentioned below. Then, this chapter will separately
elaborate on the files that are pinned and those that are not
pinned. Finally, the authors will summarise the issues in
conjunction with the work of others.

3.1 Definition of storage node
In practical application, IPFS network can be divided into
private network and common network. The IPFS network
used in most enterprise projects are private network.

IPFS realises the division of private network and public
network through SFS, and only the nodes holding the
corresponding key can access the corresponding private
network. In the private network, since there is no upper
incentive layer, all nodes are equal for storage. However, in
actual application, the size of the storage space that these
nodes can provide for IPFS network, which means the upper
limit of warehouse of each node must be different. In this
paper, those nodes that can provide a large amount of
storage space are called storage nodes.

In the public network, IPFS is combined with its upper
incentive layer called FileCoin, and miners provide huge
storage space to ensure the backup redundancy of data
storage and reorganisation in the entire network. The miner
nodes here are also similar to the storage nodes defined in
the article.

Storage nodes are necessary for IPFS. For a single node,
if it does not join the IPFS network, it is meaningless to use
IPFS for storage. In 2021, Abdullah et al. proved that IPFS
cannot compare with FTP in terms of single read-write
performance in small-scale private networks. The
application advantage of IPFS in private network lies in the
efficient utilisation of free storage space in the whole
internal network and the data security brought by
decentralisation, as well as reducing the server load through
P2P acceleration after reaching a certain scale of network
traffic. Therefore, only a medium-sized IPFS private
network can give full play to the performance advantages of
IPFS. In this case, in order to ensure that data is not lost, the
IPFS network needs to have sufficient backup redundancy,
which means that a file must be stored on multiple nodes.
Consequently, no matter what kind of usage, if the users
want to make IPFS meaningful and give full play to its
performance advantages, you must have some nodes that
provide a large amount of storage space, that is, the storage
nodes.

3.2 Unauthorised access to pinned file
The experiments are aimed at the private network used by
most of the above applications, but because FileCoin is only
an incentive layer built on top of IPFS, most experiments
can also be replicated on the storage node of the public
network.

In IPFS, a file has two storage states in a node. One is
pinned, which means that the file is locked in the node, and
the other is not pinned, which means that the file is just in
the cache. After a file is stored in the IPFS network, as the
demand increases, there will be increasing nodes for
caching the file, and the speed of downloading the file will
become continuously faster. However, after this demand
reaches its peak, it will become less and less over time, so it
is necessary to remove redundant backups that are no longer
needed in the IPFS network. In this regard, IPFS provides a

 A slice-based encryption scheme for IPFS 45

garbage collector mechanism, which can run on schedule or
manually to delete the cache files in the node. Therefore, in
order to ensure that the file will not be garbage collected, a
file needs to be pinned to multiple nodes. This has led to a
large number of files being pinned by storage nodes that
provide a large amount of storage space for the IPFS
network.

Enter ‘ipfs pin ls’ directly in the console of the storage
node, and the authors will get the CID of all the blocks
pinned to this node. The CID with the suffix ‘recursive’ is
the CID of a complete file, also known as the root. Then use
‘ipfs get CID’ to get this file, the file name is the above
CID, but there is no suffix. However, by successively trying
to replace various suffixes or using a file analyser, you can
easily read the data in the file.

3.3 Unauthorised access to unpinned file
However, if the file is not pinned to other nodes, but only
pinned to the user’s own node, there is also a problem if the
file is cached on other nodes which are necessary in this
situation. This may lead to the possibility of file loss. Also,
the cache cannot ensure the security of the file on other
nodes. Since the storage nodes can view the list of all local
blocks by using ‘ipfs refs local’, through the comparison of
the two lists, all newly added blocks can be obtained, and
this is likely to include all the contents of the newly added
cache file. The authors make an experiment with a 1.2 M
size picture and input the command ‘ipfs refs local’ twice
before and after caching the file on the storage node. By
comparing the two storage lists of local warehouses, the
paper found that all the new blocks’ CID and then use the
API provided by ipfs-go-api to call the ‘cat’ method to
obtain each block, determine whether it is a block storing
file data, and finally try to splice those blocks storing file
data in the form of data stream. After several attempts in the
sequence, the original picture was finally obtained.

This article uses an 876 KB TXT file to further analyse
the slicing method of IPFS. The authors figure out that the
size of the local block is not the expected 256 KB (262,144
bytes), but 257 KB (262,158 bytes). After opening this
block with txt, the paper found that this block has a garbled
code at the beginning and the end. After deleting it, the file
size is restored to the expected 256 KB (262,144 bytes).
Considering that IPFS slices files in the form of a data
stream, the authors open the file in binary mode and found
that all the blocks have ‘0A 8A 80 10 08 02 12 80 80 10’ at
the beginning and ‘18 80 80 10’ at the end. This means that
although files are stored in file blocks in IPFS, each file
block is almost in plaintext.

3.4 Description of related issues in other paper
In addition, because IPFS uses DHT technology, this means
that when an IPFS node introduces new content, it will
advertise the content it owns to all nodes connected to it.
The more nodes the original node publishes content
announcements, the more likely it is to encounter malicious
nodes, leading to private data leakage. In 2021, Balduf

et al.’s system can reveal which CID is requested by which
node ID and IP address at which timestamp.

Therefore, if the file itself is not encrypted, the file is
insecure. If the entire file is encrypted, the encrypted
ciphertext is completely different due to the use of different
keys, so the effect of IPFS network-wide deduplication will
no longer exist. Even attribute-based encryption will
invalidate IPFS deduplication when encrypting the same
data in the face of multiple users. In addition, the
aforementioned encryption will also complicate the system
and require a huge amount of calculation when processing
large files.

4 Embedded encryption methods based on slice
4.1 Overview
From the descriptions in the above sections, it can be
concluded that when using IPFS, if the object is not
encrypted, the data security cannot be ensured. Therefore,
the authors propose a new scheme to increase the security of
IPFS without affecting the deduplication effect and
performance.

In the original version of IPFS, when a user adds a file
to the IPFS network, the file is divided into multiple data
blocks, and each data block has a unique identifier (CID)
through which the user can search for data in the IPFS
network. Besides to data blocks containing data content,
some data blocks as parent nodes also contain the CID of
lower-level data blocks, forming a directed acyclic graph.
The file uploaded to IPFS will eventually return a unique
file identifier to the user, which is also called the CID of the
whole file or the root of the file in the DAG. Anyone can
retrieve all data blocks of the file from IPFS through the file
identifier and integrate them into one file.

From the perspective of usage, the changes to IPFS is to
add an optional parameter to the upload and download
functions (as shown in Figure 1), that is, to add an optional
parameter key to the upload function to indicate whether
encryption is required. If encryption is required, IPFS will
not only return the parameter CID after uploading the file to
the IPFS network, but also return a parameter k, as the
symmetric encryption key. The download function adds an
optional parameter k. If the file to be obtained this time is
uploaded with encryption, the user needs to provide the
correct parameter k to successfully download the file.

Regarding the management of key k, there are already
many schemes for key management in distributed systems,
so the specific key management scheme will not be
discussed in depth in this article. For example, in 2021,
Tang et al. well handled the problem of key distribution
through DH key exchange technology. DH key exchange is
a key exchange algorithm, which was proposed by
Whitfield Diffie and Martin Hellman in 1976. The
algorithm generates the same encryption key for two roles
in a completely public environment, which is widely used in
various data transmission protocols. According to the
algorithm, two users only need to generate public content

46 C. Zhou et al.

and private content respectively, and the same key can be
generated by exchanging the public content of the other
party (Joux, 2004). However, Diffie-Hellman key exchange
cannot prevent man-in-the-middle attacks (Kocher, 1996).
Due to the data traceability and tamper resistance of the

blockchain, if the Diffie-Hellman key exchange process is
implemented in the blockchain environment, this problem
can be effectively avoided. Coincidentally, the most
widespread application of IPFS is the combination with
blockchain.

Figure 1 Schematic diagram of the distribution state before and after differential data processing/IPFS network (see online version
for colours)

Figure 2 Chunker and DAG

Figure 3 Upload (see online version for colours)

Figure 4 Download (see online version for colours)

 A slice-based encryption scheme for IPFS 47

Moreover, many of the schemes in background section also
have feasible key management methods. Finally, the user
can also handle the key k like the CID before.

4.2 Chunker and Merkle directed acyclic graph
If the authors want to modify the upload and download
functions of IPFS, you must have a detailed understanding
of the upload and download process. Among them, slicer
and directed acyclic graph are the two most important parts.

Chunker, as shown in Figure 2, in the process of
uploading files, IPFS first calls the slicer called chunker to
slice the imported files in the form of data streams. The file
is cut into blocks of a specified size (256 KB by default),
and then these blocks are simply processed to become the
most basic unit block of IPFS storage.

The Merkle directed acyclic graph is constructed on the
basis of Merkle tree. The hash tree is composed of content
blocks, and each content block is identified by its CID. The
authors can refer to any of these blocks using its CID, which
allows us to build CIDs that use these sub-blocks or refer to
a tree with these sub-blocks as the root node. This means
that our files are broken down into blocks and then arranged
in a tree structure using ‘link nodes’ to connect them
together. The CID of a given file is actually an encrypted
hash of the root node (the uppermost layer) in the DAG.
This brings the following three important advantages to
IPFS. First, content addressing: use multiple hashes to
uniquely identify the content of a data block. Second,
anti-tampering: It is easy to check the Hash value to confirm
whether the data has been tampered with. Third,
deduplication: Since the hash values of data blocks with the
same content are equal, it is easy to remove duplicate data
and save storage space. During the upload process, those
same data can be filtered out by Merkle DAG, and only
need to add a file reference without occupying storage
space.

The object format of Merkle DAG is defined in IPFS.
IPFS object is a storage structure. There are two parts stored
in the IPFS object: one is link, which is used to save
references of other block data; the other is data, which is the
content of this object. Link mainly includes three parts: link
name, hash and size. If Merkle DAG is used to store the
modification of the source file, the modified content may be
only a small part. The system no longer needs to back up the
whole modified file, which is the reason why IPFS saves
storage space.

The blocks cut out by the chunker are sequentially input
into the DAGBuilder module, which stores the entire file in
the Merkle DAG structure, obtains the CID of each node in
turn, and finally returns the CID of the root node of the
entire file in the DAG.

4.3 File upload
In the upload part, the changes are mainly concentrated in
the DAGBuilder module. As introduced in the previous
section, during the upload process, the file is first sliced into

blocks of a specified size by chunker and then input into
DAGBuilder.

As shown in Figure 3, when the user adds the optional
parameter K, the improved IPFS of the article will use the
hash of the first cut out block as the key k. The hash method
uses SHA256, which means that a 256-bit hash will be
generated, which is also the method adopted by Bitcoin
(Nakamoto, 2008). Then use the 256-bits key k as a
symmetric encryption key to encrypt the file block that
needs to be encrypted. The encryption method also uses the
same AES-256 (Murphy, 1999) as Bitcoin, which is still
sufficient to ensure data security at present.

Which file blocks need to be encrypted is mainly
determined by two aspects, and this is also the result of
considering both large and small files. The authors add two
attributes to the IPFS configuration file for users to modify,
encryption header length and encryption density. The
encryption header length indicates how many consecutive
blocks at the beginning of the file must be encrypted.
Considering that some small files are still stored in clear
code even after being cut, such as txt files, the default value
is set to 4, which will ensure the security of most small files.
The encryption density represents how many of the
remaining blocks need to be encrypted except the
encryption header. Considering the existence of large files,
the default value is set to 0.01 (threshold), indicating that
one block is encrypted for an average of 100 blocks.

Considering the problem of identifying encrypted blocks
during decryption, there is a higher priority rule for
encryption. Except for the first block, other blocks that are
less than 256 KB will not be encrypted. This means that the
system will only encrypt the first block and 256 KB blocks.
The ZeroPadding method is adopted for the encryption of
the first block. For the encryption of the remaining blocks
full of 256 KB, the method of filling the key k at the end
and then encrypting is adopted to ensure that except for the
first block, the remaining encrypted blocks are larger than
256 KB to facilitate identification. And in this case, even if
the uploaded user and the accepted user profile are
inconsistent, the function will not be affected.

4.4 File download
In the download part, the changes are mainly concentrated
in the NewDagReader module. Since files are stored in the
form of file blocks in IPFS, after the user uses the download
command, IPFS will obtain each file block in turn according
to the DAG recording file slice information and the DHT
recording storage node information, and finally Integrate
these blocks into a complete file locally.

However, after the upload function is changed, the
original download function is no longer applicable, and the
file blocks stored in the IPFS network are no longer just
plaintext blocks that are less than or equal to 256 KB.
Therefore, as shown in Figure 4, it is necessary to identify
the file block during the download process to determine
whether it is a ciphertext block. If it is, it needs to be
decrypted to obtain the plaintext block.

48 C. Zhou et al.

According to the encryption strategy mentioned in the
previous section, there are two main rules for detecting
whether a file block is a ciphertext block. First, the blocks
larger than 256 KB are all ciphertext blocks. Second, if the
user adds the optional parameter key k, the first block must
be a ciphertext block.

In addition, due to the possibility of malicious users, it is
necessary to consider the situation in which malicious users
download encrypted files without providing the key or
providing the wrong key. The detection methods for these
two cases are as follows. First, the ciphertext block is
detected and the user does not provide the key k. Second,
the user provides the key k, but it is not equal to the hash
after the first block is decrypted.

5 Implementation and performance evaluation
5.1 Environment configuration
The experiment environment used in this article is as
follows: the operating system is Windows 10 Pro, Inter(R)
Core (TM) i7-9750 CPU @ 2.60GHz, mechanical hard disk,
16 GB memory. The IPFS version is v0.6.0, and the go
language version is go1.15 windows/amd64.

5.2 Upload implementation
IPFS brings together a large number of distributed ideas and
opens all functions to users in the form of command lines.
Therefore, the paper’s improvements are also provided to
users in the form of command lines and do not affect the
original functions of IPFS.

Figure 5 Upload implementation

The DagBuilder module constructs the received blocks into
DAG form for structured storage. This part of the content is
the original function of IPFS, which is not described in
detail in the article and is partially omitted in Figure 5. In
the figure, there is only ‘upload the block’ is the original
content of IPFS.

As shown in Figure 5, the authors add several steps at
the beginning and end of the DagBuilder module to achieve
the functions mentioned in previous chapter. The main
code changes are concentrated in the ‘importer/helpers/
dagbuilder.go’ file of the ‘go-unixfs’ sub-project. The entire
implementation has a number of steps as follows:

Step 1 After the file is sliced by chunker, it will first judge
whether there is an optional parameter key. If so,
go to step 2. If not, return to the original process.

Step 2 It will first determine whether the current block is
the first block. If so, obtain the hash of the block as
the encryption key k.

Step 3 Determine whether the current block needs to be
encrypted according to the encryption strategy set
by the user. If encryption is needed, use the key k
to encrypt, and then take the encrypted or
unencrypted file block in the original way to
construct the DAG and upload it to IPFS network.

Step 4 After uploading, determine whether the returned
parameter contains the key k according to whether
the key k is empty.

5.3 Download implementation
The NewDagReader module will recursively obtain each
block according to the DAG, and combine them into a
complete file in order. This part of the content is the original
function of IPFS, which is not described in detail in the
article and is partially omitted in Figure 6. Only the
‘Combine file’ in the picture is the original content of IPFS.

As shown in Figure 6, this article adds several steps to
the NewDagReader module, mainly for processing the
acquired blocks to achieve the functions mentioned in
previous chapter. The main code changes are concentrated
in the ‘io/dagreader.go’ file of the ‘go-unixfs’ sub-project.
The entire implementation has a number of steps as follows:

Step 1 Determine whether there is an optional parameter
k. If so, the system will decrypt the first block and
obtain the hash of the decrypted block. If the hash
is not equal to the key k provided by the user, it is
proved that the user has not provided the correct
key; the system terminates the process, deletes the
downloaded data, and feeds the result back to the
user. If there is no optional parameter k, enter the
NewDagReader module as usual.

 A slice-based encryption scheme for IPFS 49

Figure 6 Download implementation

Figure 7 Block reuse

Figure 8 Upload performance

50 C. Zhou et al.

Figure 9 Download performance

Step 2 Determine whether there are blocks larger than 256

KB in each block obtained in NewDagReader, if
yes, determine whether there is a key k, if yes,
perform decryption to obtain a plaintext block with
a size of 256 KB. If not, the process will be
terminated and a prompt of wrong password will
be returned. Blocks not larger than 256 KB are
combined files normally.

Step 3 Return the final combined file to the user.

5.4 Deduplication effect
The article does a certain test and analysis on the improved
IFPS deduplication feature, taking a file stored on the same
node or the same IPFS network by multiple users as an
example.

According to Figure 7, it can be seen that most of the
blocks can be reused, which greatly saves space. In
addition, since the encryption key uses the hash of the first
file block, the keys of the same file are also the same, which
makes the encrypted block also reusable. Because only
those who have the same file will get the same key, this
method will not cause leakage problems. Besides, because
the encryption keys are the same, no matter how many users
encrypt and store the same file, the space occupied by the
file in the IPFS network is at most twice the original size.

5.5 Performance evaluation
The biggest negative impact of the solution on the system is
the time to download and upload files. Therefore, the
authors conduct two rounds of experiments to test the
time-consuming uploading and downloading of files of
10 M, 100, 500, and 1,000 M size between the changed
IPFS and the original IPFS to determine whether the impact
of the changes on the original IPFS is negligible. The
experimental data is the average duration of ten operations
using go-ipfs-api, and the memory clearing operation is

performed before each operation to prevent it from affecting
the experimental results (the configuration file uses the
default value, which means the encryption header length is
4 and the encryption density is 0.01).

Figure 8 shows the time it takes for the two types of
IPFS to add files of different sizes. It can be seen from the
experimental data that the improved IPFS has less impact on
the time required to upload files. The authors use symmetric
encryption technology, and the time complexity is much
smaller than that of asymmetric encryption. Secondly,
according to the encryption strategy in this article, the actual
amount of encrypted data is still far smaller than other
methods, and this method does increase the security of the
file.

The bar on the left of Figure 9 shows the time taken by
the original IPFS to obtain shared files through CID. In
contrast, the improved IPFS displayed by the bar on the
right has no significant difference in the time to download
files of different sizes.

6 Conclusions
This article introduces a method to enhance the privacy of
file data in IPFS at the cost of a slight increasement in
workload. Compared with other methods, the workload
brought by this schema is almost negligible. Moreover, it
hardly affects the various advantages of IPFS itself. In view
of the simple coded data stream file such as txt file, the
unencrypted part is still equivalent to plaintext storage, and
the information can be directly obtained. Therefore, in the
future, the authors will consider optimising the encryption
strategy, and formulate a more complete encryption strategy
according to different file types, such as the 0.7 z format.
Files in this format only need to encrypt a few blocks
containing the tail file to greatly enhance the security of the
file, while the txt format is just the opposite. Furthermore,
because the objects of encryption and decryption are both

 A slice-based encryption scheme for IPFS 51

blocks, it is possible to use multithreading to reduce time-
consuming.

Acknowledgements
The authors would like to thank the anonymous reviewers
for their elaborate reviews and feedback. This work was
supported by the National Natural Science Foundation of
China (No. 61906099), the Open Fund of Key Laboratory of
Urban Land Resources Monitoring and Simulation, Ministry
of Natural Resources (No. KF-2019-04-065).

References
Abdullah Lajam, O. and Ahmed Helmy, T. (2021) ‘Performance

evaluation of IPFS in private networks’, in 2021 4th
International Conference on Data Storage and Data
Engineering, February, pp.77–84.

Ali, M.S., Dolui, K. and Antonelli, F. (2017) ‘IoT data privacy via
blockchains and IPFS’, in Proceedings of the Seventh
International Conference on the Internet of Things, October,
pp.1–7.

Balduf, L., Henningsen, S., Florian, M., Rust, S. and
Scheuermann, B. (2021) Monitoring Data Requests in
Decentralized Data Storage Systems: A Case Study of IPFS,
arXiv preprint arXiv: 2104.09202.

Benet, J. (2014) IPFS-Content Addressed, Versioned, P2P File
System, arXiv preprint arXiv: 1407.3561.

Cohen, B. (2003) ‘Incentives build robustness in BitTorrent’, in
Workshop on Economics of Peer-to-Peer systems, June,
Vol. 6, pp.68–72.

Hoffman, A., Becerril-Blas, E., Moreno, K. and Kim, Y. (2020)
‘Decentralized security bounty management on blockchain
and IPFS’, in 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC), IEEE,
January, pp.0241–0247.

Joux, A. (2004) ‘A one round protocol for tripartite
Diffie-Hellman’, Journal of Cryptology, Vol. 17, No. 4,
pp.263–276.

Kocher, P.C. (1996) ‘Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems’, in Annual
International Cryptology Conference, Springer, Berlin,
Heidelberg, August, pp.104–113.

Lin, Y. and Zhang, C. (2021) ‘A method for protecting private data
in IPFS’, in 2021 IEEE 24th International Conference on
Computer Supported Cooperative Work in Design (CSCWD),
IEEE, May, pp.404–409.

Maymounkov, P. and Mazieres, D. (2002) ‘Kademlia: a
peer-to-peer information system based on the XOR metric’, in
International Workshop on Peer-to-Peer Systems, Springer,
Berlin, Heidelberg, March, pp.53–65.

Mazières, D.D.F. (2000) Self-Certifying File System, Doctoral
dissertation, Massachusetts Institute of Technology.

Murphy, S. (1999) ‘The advanced encryption standard (AES)’,
Information Security Technical Report, Vol. 4, No. 4,
pp.12–17.

Nakamoto, S. (2008) ‘Bitcoin: a peer-to-peer electronic cash
system’, Decentralized Business Review, p.21260.

Pham, V.D., Tran, C.T., Nguyen, T., Nguyen, T.T., Do, B.L.,
Dao, T.C. and Nguyen, B.M. (2020) ‘B-Box – a decentralized
storage system using IPFS, attributed-based encryption, and
blockchain’, in 2020 RIVF International Conference on
Computing and Communication Technologies (RIVF), IEEE,
October, pp.1–6.

Politou, E., Alepis, E., Patsakis, C., Casino, F. and Alazab, M.
(2020) ‘Delegated content erasure in IPFS’, Future
Generation Computer Systems, Vol. 112, No. 32, pp.956–964.

Politou, E., Casino, F., Alepis, E. and Patsakis, C. (2019)
‘Blockchain mutability: challenges and proposed solutions’,
IEEE Transactions on Emerging Topics in Computing,
Vol. 9, No. 4, pp.1972–1986.

Sun, J., Yao, X., Wang, S. and Wu, Y. (2020) ‘Blockchain-based
secure storage and access scheme for electronic medical
records in IPFS’, IEEE Access, Vol. 8, No. 5096, pp.59389–
59401.

Tang, X., Guo, H., Li, H., Yuan, Y., Wang, J. and Cheng, J. (2021)
‘A DAPP business data storage model based on blockchain
and IPFS’, in International Conference on Artificial
Intelligence and Security, Springer, Cham, July, pp.219–230.

Xu, Q., Song, Z., Goh, R.S.M. and Li, Y. (2018) ‘Building an
ethereum and IPFS-based decentralized social network
system’, in 2018 IEEE 24th International Conference on
Parallel and Distributed Systems (ICPADS), IEEE,
December, pp.1–6.

