The use of classification models to identify factors differentiating the competitiveness of the EU-15 and EU-13 countries Online publication date: Wed, 30-Nov-2022
by Agnieszka Kleszcz
International Journal of Computational Economics and Econometrics (IJCEE), Vol. 13, No. 1, 2023
Abstract: This paper reports on a study of the Global Competitiveness Index pillars, aiming to differentiate the European Union countries grouped by their accession year in terms of their competitiveness. A linear (regularised logistic regression) and nonlinear (random forests) classifiers are proposed, to model the relationship between multidimensional economic condition indicators and the country's group. The key discriminators of the competitiveness of the EU-15 (accession before 2004) and the EU-13 (accession in or after 2004) are obtained by analysis of feature importance in classification models. Upon study of 12 competitive indicators from the World Economic Reports (2007-2017 edition) we conclude that the highest disparities between the groups of countries can be observed in infrastructure. Innovation, market size and institutions are the next three most important differentiating factors. A major methodological contribution of the paper is the use of explainable statistical models for identifying key features differentiating groups of countries.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Economics and Econometrics (IJCEE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com