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Abstract: Diabetic retinopathy (DR) is the leading cause of eye diseases and 
vision loss for diabetic affected people. Due to the damage of retinal blood 
vessels, diabetic patients often suffer from DR. So the retinal blood vessel 
segmentation plays a crucial role in the diagnosis of DR. We can prevent vision 
loss or blindness problems if the diagnosis happens during the early stages. 
Early diagnosis and initial investigation would help lower the risk of vision loss 
by 50%. This article exploits the supervised classification approach to detect 
blood vessels by applying features such as grey level and invariant moments. 
The image pre-processing and blood vessel segmentation are the two essential 
steps are used in this study, along with the proposed classification framework 
using neural network models. Two publicly available retinal image datasets, 
such as DRIVE and STARE, are used to assess the proposed supervised 
classification framework. The suggested supervised classification methodology 
in this study attains the average retinal blood vessel segmentation accuracy of 
93.94% in the DRIVE dataset and 95.00% in the STARE dataset. 

Keywords: diabetic retinopathy; fundus imaging; grey level features; invariant 
moments; vessel segmentation. 
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1 Introduction 

Diagnosing glaucoma is often a difficult job. It is often complicated, and in most cases, 
its prediction is doubtful. Glaucoma is the second leading cause of permanent blindness, 
especially in the 50 years or older group people in the world. Optic nerves’ damage is the 
major effect of glaucoma disease, which may lead to long-lasting vision loss. But we can 
prevent blindness from glaucoma through early diagnosis and correct treatment. Primary 
open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG) are the  
two common forms of glaucoma (Sakthivel and Narayanan, 2015; Medha and Pradeep, 
2014; Abramoff et al., 2010). The normal eye and an eye with glaucoma are shown in 
Figure 1. 

Figure 1 (a) The normal eye and (b) an eye with glaucoma (see online version for colours) 

 
(a)     (b) 

It is a disease of progressive optic neuropathy with loss of retinal neurons and their 
axons. It is difficult or impossible to detect the early stages of optic nerve damage. In a 
realistic scenario, 50% of the people with glaucoma do not realise it. Most people (95%) 
with the elevated intraocular pressure (IOP) will never have the optic nerve damage 
associated with glaucoma. Most of the ocular findings in abnormal (glaucoma) people 
might also appear in healthy people. Hence, the early diagnosis of glaucoma becomes a 
more challenging task (Kanski and Bowling, 2011; Patton et al., 2006). 

IOP is not only the cause of glaucoma disease. Other than IOP, age, cup-disk ratio, 
and central corneal thickness are the significant causes of developing POAG. Irritability, 
photophobia, epiphora, flickering, and low vision are the symptoms of glaucoma. The 
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elevated IOP, buphthalmos, Haab’s striae, corneal clouding, glaucomatous cupping, and 
field loss are the signs of glaucoma disease (Kwon et al., 2009). 

Glaucoma is a kind of disorder defined by higher IOP and the reactions of the 
following (Narasimhan et al., 2012): 

• elevated pressure 

• optic nerve atrophy 

• peripheral visual field loss. 

Figure 2 Retinal image datasets (see online version for colours) 

 

Figure 3 The normal retinal image (see online version for colours) 

 

There are many publicly available retinal image datasets used to diagnosis diabetic 
retinopathy (DR) and glaucoma diseases. Digital retinal image for vessel extraction 
(DRIVE) database, structured analysis of the retina (STARE) database, high-resolution 
fundus (HRF) image database, and digital retinal images optic nerve segmentation 
database (DRIONS-DB) are often used databases to probe the results of DR and 
glaucoma. Figure 2 presents such publicly available retinal image datasets (Narasimhan 
et al., 2012; Geetha et al., 2017). Figure 3 shows a typical retinal image and its structure. 
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Figure 4 Four normal retinal fundus images from STARE dataset, (a) im0035 (b) im0076  
(c) im0119 (d) im0236 (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

Figure 5 DR (eye disease) (see online version for colours) 

 

The four normal retinal fundus images (STARE dataset) are shown in Figure 4. It is 
apparent from the pictures that there are no signs of pathology (disease) like 
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hemorrhages, aneurysm, hard exudates, abnormal growth of blood vessels and cotton 
wool spots (Geetha et al., 2017; Stolte and Fang, 2020). Such pathological signs of DR 
are illustrated in Figure 5. Figure 6 presents the four abnormal retinal images (STARE 
dataset). 

Figure 6 Four abnormal retinal fundus images from STARE dataset, (a) im0113 (b) im0116  
(c) im0223 (d) im0247 (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

This paper is organised as follows: Section 2 contains the related works (survey) to 
explore further research in this domain. Section 3 presents the materials and methods, 
such as image enhancement (pre-processing) tasks on colour retinal fundus images, 
features extraction, and a classification stages. Simulation results and discussion are 
described in Section 4. Section 5 contains the conclusions part. 

2 Related works 

The automatic etection of glaucoma using fundus images often demands to detect and 
segment the blood vessels. Blood vessel segmentation is a powerful technique since 
vessels’ analysis plays a key parameter not only for diagnosis but also for the clinical 
treatment and execution. Many methods have been explored for the detection of blood 
vessel segmentation. The most commonly used techniques (Diaz et al., 2019; Babu and 
Shenbagadevi, 2011; Kirbas and Quek, 2004) are shown in Figure 7. 
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Figure 7 Techniques for blood vessel segmentation (see online version for colours) 

 

Few researchers demonstrated supervised segmentation techniques using artificial neural 
networks (NNs) (Zhao et al., 2014; Franklin and Rajan, 2014). Others explored feature 
extraction, two convolutional neural networks (CNNs), and random forest method to 
detect blood vessels (Wang et al., 2015). Some researchers, during the training, deployed 
self-organised maps from the input image and then seen vessels using the k-means 
algorithm (Lupascu and Tegolo, 2011). In Yin et al. (2013), a probabilistic tracking 
technique with a Bayesian classifier was explored to identify blood vessels. In Zhang  
et al. (2014), the authors demonstrated a similar probabilistic approach and a multi-scale 
line identification method to detect blood vessels. 

For the correct blood vessel segmentation, few others explored orthogonal projections 
of the blood vessel elements texture features (Zhang et al., 2009). The mathematical 
morphological techniques and k-means algorithm were combined (Hassan et al., 2015) 
for the blood vessel segmentation. In Abbadi and Saadi (2013), blood vessel 
segmentation was achieved twofold: one is the advanced image enhancement to remove 
noise, non-uniform illumination, and low contrast, and the second are with mathematical 
morphological techniques. 

In Singh et al. (2016), the authors used discrete wavelet analysis features from the 
optic disc (OD). Bit plane analysis was used to locate the OD. Principal component 
analysis (PCA) and evolutionary parameters were used to detect significant features. A 
higher accuracy was achieved using a support vector machine for the features generated 
using PCA. The technique was adopted on a hospital dataset of 63 images with an 
accuracy of 94%. The classification accuracy can be improved by including clinical 
features. 

Few others (Maheshwari et al., 2017) used a variation mode decomposition method to 
extract features such as Kapoor, Reyni, Yager and fractal dimension. ReliefF method was 
used to select the significant features. For training the model, the least square SVM  
was used to classify a hospital dataset of 488 images. This technique offered a good 
classification accuracy of 94.79%. 
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In Noronha et al. (2014), the authors detected higher-order cumulant features from the 
fundus images. The linear discriminant analysis was used to reduce the extracted feature 
size. The resultant features were applied to classify normal and glaucoma images using 
naive Bayes (NB) and SVM classifier. The technique was adopted on a hospital dataset 
of 272 images. Using the NB classifier, the best accuracy of 92% was obtained. They 
concluded with a report that accuracy can be improved using clinical features such as a 
cup-disc ratio (CDR). 

In Pathan et al. (2021), the authors explored automated segmentation algorithms for 
OD and optic cup to overcome the minimised variability present between the region of 
interest and the background. Also, the segmented regions were used to generate clinical 
and textural features. The proposed method was applied to a hospital dataset of  
300 images and publicly available Drishti dataset. 

In Kumar et al. (2016), the authors deployed the blood vessel segmentation process is 
twofold: one is to apply the contrast limited adaptive histogram equalisation (CLAHE) to 
the retinal fundus image, and the second is to adopt the Gaussian and Laplacian of 
Gaussian (LoG) with a binarisation process for the segmentation. Few others 
demonstrated a matched filter with a Gaussian function of zero-mean to locate blood 
vessels and computed threshold-based first-order derivative of the resulting image (Zhang 
et al., 2010). 

3 Materials and methods 

3.1 Pre-processing 

In general, retinal colour fundus images would face critical lighting abnormalities, low 
contrast and noise. To sort out these difficulties and obtain better images for the 
diagnosis, image enhancement with pre-processing steps are often required (Marin et al., 
2011). The removal of vessel central light reflex, background homogenisation, and vessel 
enhancement are the crucial steps in the pre-processing, as illustrated in Figure 8. 

In the beginning, the green channel is extracted from the retinal colour image since it 
produces better blood vessel background contrast information. The other two channels, 
such as red and blue, obtain low contrast and poor dynamic range, respectively (Marin  
et al., 2011). Naturally, blood vessels look darker than the background because of the 
minimal reflectance of the retinal parts. Then, the median filter is used to remove the 
noise components at the early stage. For the better view of the vessel cross-sectional grey 
level parts, the Gaussian would help but some vessels have a light reflex that flows at 
blood vessels’ middle length. A mathematical morphological opening with a suitable 
structuring element is used to nullify these brighter chunks. Also, Gaussian and mean 
filters are used to remove the noise further. To enhance the vessels (segmentation) 
additionally, the morphological top-hat transformation is adopted. The resulting images 
during the pre-processing steps are shown in Figure 9. Here, the original image is 
collected from the STARE dataset. 
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Figure 8 Pre-processing steps 

 

3.2 Features extraction 

Image features are useful properties of the image, which play a primary role in image 
processing. Image features become useful in classifying or detecting images or extracting 
information from the raw images. This phase is to characterise the pixels in terms of a 
feature vector with some quantitative measurements that may be useful to categorise 
them as blood vessels or non-vessels. In this study, the following two sets of features are 
used for better classification. 

Firstly, the grey pixel values of blood vessels are smaller than the surrounding pixel 
values. Such statistical information is used to extract the features. For example,  
grey-level features in the fundus image are computed by the difference between grey 
values in blood vessel pixel and its surrounding pixel’s statistical value. As a result, 
minimum, maximum, mean, and standard deviation become useful statistical measures. 

Secondly, the invariant moments are often used effectively in image recognition or 
classification problems and hence explored as prominent features in various image 
processing applications (Hu, 1962). These invariant moments never vary because of 
scaling, rotation and translation of images. Features never change due to scaling, rotation, 
and translation of images. Hence, invariant moments for every block can be assessed 
simply with the ground truth image block to identify blood vessels or non-vessel. 
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Figure 9 Resulting images during the pre-processing step, (a) original retinal colour image  
(b) extracted green channel (c) median filtered (d) Gaussian and mean filtered  
(e) the final processed image (see online version for colours) 

 
(a) (b) (c) 

 
(d) (e) 

3.3 Classification 

The linear classifiers might produce poor results for the separation of blood vessels, and 
non-vessels and hence the nonlinear classifiers can be used for this study. So any 
nonlinear classifiers would provide the solution to the blood vessel segmentation 
problem. The NNs, k-nearest neighbour (k-NN) algorithm, support vector machines, and 
Bayesian classifiers are the widely used nonlinear classifiers for better classification. A 
multilayer feed-forward neural network (FFNN) is implemented in this study. To classify 
the blood vessel or non-vessel pixels, NN classifiers are used in both training and testing 
phases. 

4 Results and discussion 

4.1 Dataset used 

We experiment with our method on the two publicly available datasets: DRIVE and 
STARE. The ground truth or manually segmented images by experts supplied in these 
databases are used to better assess the proposed technique. 
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4.1.1 DRIVE 
The DRIVE dataset contains 40 retinal colour fundus images acquired from a DR 
screening program organised in the Netherlands (Staal et al., 2004). The images were 
captured with a Canon CR5 non-mydriatic 3-CCD camera at a 45-degree field of view 
(FOV). They were stored in 24-bit TIFF with a resolution of 565 × 584 pixels. Three 
experts’ segmentation reports were available. The first expert results were used as ground 
truth in this study. For the classification model, image27 was used to train the NN, and  
20 images (image 01-to-image 20, see Table 1) were used for testing (assessment). For 
classification tasks, a multiyear FFNN was performed in this study. For training 
purposes, 20 neurons were used in the hidden layer. The training required more time  
(20 minutes) than testing (5 seconds only). 

Figure 10 A view of NN training (see online version for colours) 
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Table 1 Vessel/non-vessel classification 

Classification predictions Manual identification of a 
pixel ∈ vessel 

Manual identification of a 
pixel ∉ vessel 

Model identifies pixel ∈ vessel True positive (TP) False positive (FP) 

Model identifies pixel ∉ vessel False negative (FN) True negative (TN) 

4.1.2 STARE 
The STARE dataset includes 20 retinal colour fundus images captured by the TopCon 
TRV-50 fundus camera at a 35-degree FOV. They were stored in 24-bit TIFF with a 
resolution of 700 × 605 pixels (Hoover et al., 2000). Among 20 images, 10 images are 
normal, and the remaining 10 are glaucoma affected images. The two expert 
segmentation reports were available, but the first one is used here as ground truth for 
classification purposes. For performance measures, an image77 was used to train the NN 
model, and the remaining 19 images were used for the testing phase. For classification 
tasks, a multiyear FFNN was performed in this study. For training purposes, 15 neurons 
were used in the hidden layer. Again, as expected, the training required more time than 
the testing. Figure 10 shows a view of the training phase by a NN model. 

4.2 Training and testing phases 

The frameworks of training and testing evaluation stages are shown in Figures 11 and 12, 
respectively. 

Figure 11 The training phase by a feed-forward backpropagation neural network (FFBN) 

 

4.3 Classification metrics 

Machine learning techniques are useful for clinicians for better diagnosis. In this study, 
during the blood vessel segmentation process, the event is a pixel-based classification 
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result. Any pixel might be categorised as a blood vessel or non-vessel. As a result, there 
are four likelihoods: two classifications and two misclassifications. 

Figure 12 The testing phase for the ‘test_image_01’ using a trained NN 

 

The classifications are the true positive (TP), where a pixel is recognised as the part of 
the vessel region in both the segmented image and ground truth image, and the true 
negative (TN) where a pixel is classified as not a part of the vessel region in the 
segmented image and ground truth image. The two misclassifications are the false 
negative (FN), where a pixel is marked as non-vessel part in the system processed image 
but as a vessel part in the ground truth image, and the false positive (FP) where a pixel is 
sealed as vessel area in the system processed image but to the non-vessel area in the 
ground truth image. Table 1 summarises the pixel classification. 

In this study, the classification procedure was assessed in terms of accuracy (Acc), 
sensitivity (Se), specificity (Sp), and precision or positive predictive value (PPV). Taking 
Table 1 into account, these metrics are expressed as (Tharwat, 2018) 

TN TPAcc
TN TP FN FP

+=
+ + +

 (1) 

TPSe
FN TP

=
+

 (2) 

TNSp
FP TN

=
+

 (3) 

.TPPPV
FP TP

=
+

 (4) 

4.4 Simulation results and discussion 

Evaluation results in the DRIVE dataset (20 images) and STARE dataset (19 images) are 
detailed in Tables 2 and 3, respectively. The average accuracies of the DRIVE dataset 
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and STARE dataset are 93.94% and 95.00%, respectively. Also, the performance 
comparison results are summarised in Tables 4 (DRIVE) and 5 (STARE). For both the 
datasets, the average accuracy of this study is computed, compared and tabulated in 
Tables 4 and 5. 
Table 2 Evaluation results in the DRIVE dataset 

Image Normal (or) DR Acc Se Sp PPV 
01_test.tif Normal 0.9431 0.6150 0.9752 0.7087 
02_test.tif DR 0.9506 0.7053 0.9785 0.7894 
03_test.tif Normal 0.9375 0.5000 0.9860 0.7977 
04_test.tif DR 0.9570 0.684 0.9846 0.8187 
05_test.tif DR 0.9530 0.6735 0.9818 0.7931 
06_test.tif DR 0.9167 0.2209 0.9917 0.7419 
07_test.tif DR 0.9518 0.6631 0.9809 0.7771 
08_test.tif DR 0.9439 0.5594 0.9801 0.7255 
09_test.tif DR 0.9291 0.2750 0.9867 0.6467 
10_test.tif DR 0.9476 0.5732 0.9812 0.7325 
11_test.tif DR 0.9488 0.6765 0.9755 0.7311 
12_test.tif DR 0.9392 0.4494 0.9855 0.7459 
13_test.tif DR 0.9319 0.4377 0.9855 0.7658 
14_test.tif DR 0.9291 0.3837 0.9771 0.5959 
15_test.tif DR 0.9396 0.6148 0.9647 0.5729 
16_test.tif DR 0.9281 0.3965 0.9809 0.6727 
17_test.tif DR 0.9215 0.1762 0.9902 0.6228 
18_test.tif DR 0.9361 0.3924 0.9829 0.6636 
19_test.tif DR 0.9374 0.4482 0.9816 0.6883 
20_test.tif DR 0.9453 0.5278 0.9784 0.6601 

Table 3 Evaluation results in the STARE dataset 

Image Normal (or) DR Acc Se Sp PPV 
im0001 DR 0.9350 0.3175 0.9885 0.7061 
im0002 DR 0.9406 0.4466 0.9758 0.5688 
im0003 DR 0.9527 0.6766 0.9703 0.5291 
im0004 Normal 0.9430 0.2914 0.9952 0.8280 
im0005 DR 0.9156 0.4966 0.9572 0.5356 
im0044 DR 0.9460 0.5036 0.9791 0.6437 
im0081 Normal 0.9651 0.5823 0.9960 0.9214 
im0082 Normal 0.9663 0.7797 0.9822 0.7891 
im0139 DR 0.9512 0.5078 0.9900 0.8164 
im0162 Normal 0.9626 0.5805 0.9919 0.8463 
im0163 Normal 0.9711 0.7466 0.9899 0.8616 
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Table 3 Evaluation results in the STARE dataset (continued) 

Image Normal (or) DR Acc Se Sp PPV 

im0235 Normal 0.9562 0.5904 0.9919 0.8774 

im0236 Normal 0.9538 0.5494 0.9941 0.9021 

im0239 Normal 0.9477 0.6526 0.9756 0.7169 

im0240 Normal 0.9263 0.3218 0.9950 0.8804 

im0255 Normal 0.9534 0.5454 0.9935 0.8914 

im0291 DR 0.9624 0.5295 0.9855 0.6602 

im0319 Normal 0.9623 0.4387 0.9859 0.5834 

im0324 Normal 0.9378 0.3428 0.9804 0.5554 

Table 4 Performance comparisons in the DRIVE dataset 

Method Accuracy (%) 

Palomera-Perez et al. (2010) 92.5 

Ricci and Perfetti (2007) 92.66 

Budai et al. (2013) 95.72 

Thangaraj et al. (2018) 96.06 

Marin et al. (2011) 94.48 

Xiao et al. (2013) 95.29 

Proposed method 93.94 

Table 5 Performance comparisons in the STARE dataset 

Method Accuracy (%) 

Palomera-Perez et al. (2010) 92.6 

Ricci and Perfetti (2007) 94.52 

Budai et al. (2013) 93.86 

Thangaraj et al. (2018) 94.35 

Marin et al. (2011) 94.75 

Xiao et al. (2013) 94.76 

Proposed method 95.00 

5 Conclusions 

Our sole objective is to explore the blood vessel segmentation algorithm using a 
supervised classification approach with an ANN model using grey level and invariant 
moment feature extraction. Popularly used datasets, such as DRIVE and STARE, are 
used in this study. Both healthy and DR images are adopted from each dataset for better 
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results. This study’s suggested supervised framework achieved the average vessel 
segmentation accuracy of 93.94% in the DRIVE dataset and 95.00% in the STARE 
dataset. This work can be further extended to focus on advanced machine learning 
techniques such as CNNs and deep learning models for better diagnosis results. 
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