Supervised learning software model for the diagnosis of diabetic retinopathy
by M. Padmapriya; S. Pasupathy
International Journal of Computational Vision and Robotics (IJCVR), Vol. 13, No. 1, 2023

Abstract: Diabetic retinopathy (DR) is the leading cause of eye diseases and vision loss for diabetic affected people. Due to the damage of retinal blood vessels, diabetic patients often suffer from DR. So the retinal blood vessel segmentation plays a crucial role in the diagnosis of DR. We can prevent vision loss or blindness problems if the diagnosis happens during the early stages. Early diagnosis and initial investigation would help lower the risk of vision loss by 50%. This article exploits the supervised classification approach to detect blood vessels by applying features such as grey level and invariant moments. The image pre-processing and blood vessel segmentation are the two essential steps are used in this study, along with the proposed classification framework using neural network models. Two publicly available retinal image datasets, such as DRIVE and STARE, are used to assess the proposed supervised classification framework. The suggested supervised classification methodology in this study attains the average retinal blood vessel segmentation accuracy of 93.94% in the DRIVE dataset and 95.00% in the STARE dataset.

Online publication date: Wed, 30-Nov-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Vision and Robotics (IJCVR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com