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Abstract: In recent times advancements in 3D printing technology, primarily 
pertaining to biocompatible materials, have paved the way for customisable 
biomedical implants. However, the costs of these implants are very high mostly 
due to expensive materials like Ti64 and associated printing technologies. One 
method to mitigate this cost challenge is by optimising the material content in 
the implant structure while keeping its robustness intact. Various methods of 
structural topology optimisation have been explored by researchers in this field 
to overcome this challenge. In this paper, a novel genetic algorithm (GA)-based 
topology optimisation procedure is compared with methods like structural, 
lattice topology optimisation and Ad joint method. Comparisons are made with 
respect to mass reduction with minimum deformation. The procedure is 
implementing a MATLAB code to obtain structurally optimised topologies for 
various canonical structures. For experimental validation of optimisation 
procedure, a cantilever beam structure made of Ti64 material was printed as a 
test coupon and compared with MATLAB simulation. The obtained optimised 
topologies were found to be in agreement with topologies obtained using 
different optimisation techniques with similar boundary conditions. 

Keywords: topology optimisation; stiffness matrix; bone implant; genetic 
algorithms; lattice. 
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1 Introduction 

With remarkable development in medical, bio-medical engineering and material science 
fields, replacement of impaired bone joints have increased. The utilisation of hip implants 
is to grow by a compound annual growth rate (CAGR) of 1.2%, leading to an increase 
from 1.8 million per year in 2015 to 2.8 (2.6–2.9) in 2050 (Pabinger et al., 2018). 
Typically, subtractive machining techniques have been used for manufacturing bone 
implants. However, for better customisation and lesser lead times, 3D printing has been 
lately explored extensively (Ma et al., 2017). Although, with the use of additive 
manufacturing very high degree of customisation is possible, the conventionally used  
bio-compatible materials like Ti-6Al-4V powders used for manufacturing are still very 
expensive. Moreover, manufacturing lead times also augment the cost. Hence, 
optimisation to reduce material as well as manufacturing time has been researched 
extensively in this field (Ma et al., 2017; Chate and Deshpande, 2017). One such 
technique, namely structural topology optimisation has been reported to be very effective 
and thus has been a standard optimisation option (Zhu et al., 2021; Kumar and Rakshit, 
2020). However, structural topology optimisation does not guarantee globally optimal 
solutions at times (Cai et al., 2020). Another technique, namely lattice optimisation 
allows to generate a lattice structure of different configurations within the region of 
interest (Sigmund, 2001). It includes varying thickness of the lattice members as part of 
the optimisation. Lattice structures can be highly beneficial because weight can be 
substantially reduced compared to solid parts made using traditional manufacturing 
methods. Furthermore, recent advances in additive manufacturing enable the creation of 
lattice structures in ways that were not possible with traditional manufacturing (Meneses 
et al., 2018). The background for lattice optimisation is analogous to the discrete 
optimisation process used for 2D trusses (Cheng et al., 2017). The lattice configurations 
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can be visualised to be formed of truss members of different cross-section areas. As a 
result of the optimisation procedure, a sensitivity map is obtained. It is utilised to decide 
the cell densities which in turn are dependent on the lattice member areas. 

Although, lattice optimisation procedure is highly compatible with 3D printing, it 
does not guarantee a globally optimal structure. Genetic algorithms (GAs) for topology 
optimisation have been explored extensively by researchers worldwide (Cheng et al., 
2017). A GA-based structural topology optimisation technique was investigated using 
bit-array representation (Cheng et al., 2017). Similar approach was explored for sizing 
optimisation of truss structures (Yang and Tai, 2005; Okwu and Tartibu, 2021). A 
constraint handling strategy was proposed for bit-array representative GA technique 
(Šešok and Belevičius, 2007). Since GA-based optimisation is known to be 
computationally expensive, an approach to improve performance of topological 
optimisation tool by introducing dynamic variation of the population size of children 
during the process of optimisation was investigated (Wang and Tai, 2003). Basically GA 
evolves as a set of individual termed population. According to Darwinian survival of 
fittest principle, the fittest individual that is near to optimal point of the function will 
appear. The steps involved are selection, crossover and mutation (Du et al., 2018). The 
classical 1 point, 2 point and uniform crossovers, was the first choice for operators and 
divides in two different operators, diagonal crossover and block crossover. The mutation 
proceeds by flipping randomly selected bits and are classified as Boundary mutations and 
epistatic mutation (Du et al., 2018). 

The general framework of a cantilever plate is that it is fixed on vertical part of its 
boundary and a single force is applied on the middle. According to Chapman (1994) and 
Jana et al. (1992) the quality of solution greatly depends on α (angle of deflection of 
cantilever beam during loading). A medium value of α is considered and then it is 
increased by a factor of 10 to satisfy the constraints and iterated solutions of GAs are 
demonstrated. For the cantilever plate the height, loading, displacements are provided so 
that more optimal solutions can exists and GA method is then able to find such multiple 
solutions. Finally, the compliance fitness is used in order to compare the results with 
those of homogenisation method to check its feasibility (Jouve, 1993; Melanie, 1998). 

In literature, various methods of structural topology optimisation and machine 
learning techniques are available. Prominent among them are GAs, synthetic annealing, 
and convoluted neural networks (CNNs) (Jensen, 1992). GAs are either used directly or 
in combination with conventional topology optimisation methods. GA-based algorithms 
are robust optimisers, and hence can handle problems with multiple local minimum. 
However, these methods are more time consuming. Synthetic annealing method is 
inspired from metallurgy; it is a regenerative topology optimisation technique similar to 
GAs. This method is a robust optimisation method unlike gradient-based methods and 
can effectively deal with multiple extrimum. Very unique topology features can be 
ascertained using this technique. CNN is a machine learning technique mostly employed 
in image processing, object detection and computational fluid dynamics. However, this 
method has now found application in structural topology optimisation. A set of different 
classes of structures with associated boundary conditions and stress strain fields are used 
as training data for the CNN model. Once the CNN model is trained, any input domain 
with boundary conditions and be input in the model and the output topology is 
ascertained (Meneses et al., 2018; Klarbring and Christensen, 2009; Yang and Tai, 2005). 
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In this work, a GA-based optimisation methodology is explored for material 
optimisation of hip joint bone implants. It is carried out by taking a cantilever beam as an 
example for topology optimisation. The objective is to optimise the material content in 
the structure so as to reduce the cost of cantilever beam by use of different lattice 
structures to augment the lattice optimisation process. The procedure is extended to the 
hip joint bone implant to reduce the material content. 

2 Topology optimisation problem 

A canonical structural configuration as depicted in Figure 1 is used for topology 
optimisation with different boundary conditions. A cantilever beam structure of size 
50mm×6mm×6mm made of Ti64 material is 3D printed modelled as a test coupon. The 
boundary conditions used are, fixed at one end and single force applied at other end as  
5 N. 

Figure 1 Cantilever beam depicting dimensions and boundary conditions used for analysis 

 

In general, a structural optimisation problem takes the following form: 
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The structural optimisation problem can be divided into three classes, namely sizing 
optimisation: this is when x is some type of structural thickness, i.e., cross-sectional areas 
of truss members, shape optimisation where x represents the form or contour of some part 
of the boundary of the structural domain and topology optimisation, which is the most 
general form of structural optimisation. In a discrete case, such as for a truss, it is 
achieved by taking cross-sectional areas of truss members as design variables. 

A topology optimisation problem based on the power law approach, where the 
objective is to minimise compliance can be written as (Zhu et al., 2021): 
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where U and F are the global displacement and force vectors, respectively, K is the global 
stiffness matrix, ue and ke are the element displacement vector and stiffness, V(x) and 
V(0) are volume and design domain volume, respectively and f is the prescribed volume 
fraction, and x is the vector of design variables. The power law approach is applied to a 
2D cantilever beam using MATLAB for obtaining the output topology. Figure 2 shows 
the output topology of the beam obtained through structural topology optimisation using 
power law approach. 

Figure 2 Output configuration of a cantilever beam obtained through structural topology 
optimisation using power law approach 

 

In case of GA-based topology optimisation, parent structures have to be represented in a 
manner which is suitable for operations like crossover and mutation. Several methods 
have been explored for topology representation. Figure 3 describes the bit-array 
representation and resulting topology commonly used in GA-based topology 
optimisation. The optimal topology obtained by the GA bit-array representation method 
is shown in Figure 4. 

Figure 3 Decoding step of the bit-array representation 

 

Source: Yang and Tai (2005) 
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Figure 4 Optimal topology for a cantilever beam obtained by the GA with bit-array 
representation 

 

The GA presented in this paper represents the structure using finite truss elements, where 
the areas of cross-section of these truss elements are randomly chosen and subsequently 
represented by binary code. 

3 GA-based topology optimisation in MATLAB 

The MATLAB code is written for optimisation of cantilever beam with the boundary 
conditions shown in Figure 1. MATLAB implementation involves creation of a 
geometric model function, 2D finite element function, boundary condition function, 
genetic cross-over function, genetic mutation function and post processing function 
(Annexure). The topology optimisation problem based on the power law approach stated 
in equation (2) can be solved by using different approaches such as optimality criteria 
(OC), sequential linear programming (SLP) or method of moving asymptotes OC (Cai  
et al., 2020). For simplicity, OC method is used in the present work. Functions are 
developed in MATLAB for different optimality criterions. The GA used in this work 
randomly initiates a sample set of initial parent population. In this case parents are truss 
structures with variable member cross-section areas which are randomly specified. The 
fitness of each parent configuration is evaluated using the finite element code as per the 
fitness criterion. Once the parent generation is ranked, mating step is initiated and a new 
generation is produced using an elitist strategy (Denies, 2012). 

3.1 Main program 

In the main script, first step is to initialise the geometry by setting up the domain 
coordinates (Annexure). The geometric model function then automatically generates the 
nodes and elements and stores this information in a node list and an element list vector. 
Once the mesh in the form of truss elements has been created, the code manually takes 
the input boundary conditions using the boundary condition function. In the GA part of 
the code, a set of parent configurations is generated initially with random truss element 
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areas. These initial parent generations as shown in Figure 5 undergo various permutation 
and combinations to finally generate the optimum structure with the help of GA. 

3.2 Finite element code 
The finite element code written for this work is based on 2D truss elements (Annexure). 
Each element has only two nodes and each node has 2 degrees of freedom. The element 
stiffness matrix is defined as: 

2 2

2 2

2 2

2 2

e

C CS C CS
CS S CS SEAK

L C CS C CS
CS S CS S

− − 
 − − =
 − −
 
− − 

 (3) 

where E = modulus of elasticity of the element, A = cross section Area of the element,  
L = Length of element and C = cos θ, S = sin θ and θ is the angle made by the element 
w.r.t the basis. 

3.3 Objective function 
The objective function is the important quantity in any optimisation procedure. In case of 
structural topology optimisation problem shown in Figure 1, traditionally the mean 
compliance is chosen as the objective function to be minimised. Compliance is defined 
as: 

( ) TC x F u=  (4) 

where F is the external force and u is the nodal displacement. 

3.4 Genetic algorithm 

The first step involved in GA is the conversion of a structural configuration into genetic 
code (Wang and Tai, 2003). Each specific member has a genetic code which specifies the 
member cross section area. Hence, the area An is unique to a specific element. As a rule, 
no element shall have zero area of cross section in the beginning. First get a set of 
random parents, find their fitness, and perform a mating ritual as per rule. Randomly 
selected parent configuration set for optimisation process is as depicted in Figure 5. 

Crossover is performed for all the elements as per the rule described in Figure 6. 
After a number of generations have passed, mutation is performed as per the rule as 
shown in Figure 7. After a decided number of iterations suitable configuration is arrived, 
which can further be optimised using gradient decent and sensitivity analysis. The 
complete algorithm flow is described in Figure 8. Once the parent generation is analysed 
for fitness using the FEA function, the set of parent generation is sorted and ranked as per 
their fitness level. A mating pool is then specified where the most fit configurations 
undergo the process of crossover. To achieve this, the element areas of a particular 
configuration are first converted to a binary code and subsequently rendered to a 
crossover operation. The new generations formed after this iteration is further sorted and 
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this process is repeated in a loop until the change in the objective function is less than a 
set magnitude. 

Figure 5 Randomly selected parent configuration set for optimisation process (see online version 
for colours) 

 

Figure 6 Pictorial description of crossover in genetic algorithms 
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Figure 7 Pictorial description of mutation in GAs 

 

Source: Jouve (1993) 

Figure 8 Algorithm flow diagram for genetic topology optimisation 
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The mutation operation is performed after a gap of every few iterations to obtain the 
global extremum. Without mutation operation the algorithm has a tendency to converge 
to a local extremum. Moreover, an elitist strategy has been used while sorting the 
population so that a good parent configuration is retained. The flow diagram for genetic 
topology optimisation is shown in Figure 8. 

3.5 Post-processing 

The post-processing function is used to visualise the results of the optimisation process. 
After the optimisation has been carried out, truss members with areas less than a set value 
have been eliminated. The function also calculates the node reactions and stresses. 

4 ANSYS simulation 

Topology optimisation of the test coupon geometry is carried out using ANSYS 
Workbench. The topology optimisation is carried out for the test coupon using different 
density (ρ – kg/m3) cubic cellular lattices structures shown in Figure 9. Topology 
optimised structure is obtained after number of interactions iteration in ANSYS. Figure 
10 shows the optimised topology obtained by ANSYS simulation. The lattice structure 
used is simple cubic lattice with relative density (ρ) – 0.1739 kg/m3. 

Figure 9 Cubic cellular structures with different relative densities used in lattice optimisation,  
(a) ρr = 0.1739 (b) ρr = 0.2865 (c) ρr = 0.4123 (d) ρr = 0.5428 (e) ρr = 0.6695 

 
 (a) (b) (c) (d) (e) 

Figure 10 Topology optimisation of cantilever beam structure in ANSYS (see online version  
for colours) 
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Figure 11 Lattice optimised structure with simple cubic lattice (see online version for colours) 

 

Figure 12 Lattice optimised structure with sensitivity map (see online version for colours) 

 

As a result of the optimisation procedure using ANSYS simulation, a sensitivity map is 
obtained. Figure 12 shows the sensitivity map, it is utilised to decide the cell densities 
which in turn are dependent on the lattice member areas. 

5 Result and discussions 

Cantilever beam geometry simulated using ANSYS topology optimisation was taken to 
analyse the efficacy of the developed genetic topology optimisation code. Figure 13 
shows the first four random parent configurations of initial generation. 

Figure 14 shows the convergence curve for the cantilever beam with fixed boundary 
conditions. For every iteration random parents of previous generation is selected. 
Structure becomes better in every iteration and converges to the applied boundary 
condition. Figure 14 shows the convergence curve for genetic topology optimisation. 
Objective function 1 is to minimise the given cost function, i.e., Umin (minimum 
Deflection). The final optimised topology can be seen in Figure 15 for these boundary 
conditions. 
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Figure 13 First four random parents of initial generation (see online version for colours) 

 

Figure 14 Convergence curve for genetic topology optimisation (see online version  
for colours) 
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Figure 15 Optimised geometric configuration using GA-based optimiser (see online version  
for colours) 

 

Figure 16 Optimised geometry for cantilever beam (see online version for colours) 

 

The same geometry was analysed for cantilever beam boundary conditions and a force 
(P) of 5 N was specified at node 13 as shown in Figure 16. It can be inferred from the 
figure that the final configuration is similar in topology as obtained using ANSYS 
Topology optimisation simulation as shown in Figure 10. The trend of compliance w.r.t 
beam mass is depicted in Figure 17. 
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Figure 17 Variation of structure compliance w.r.t mass reduction  

 

For the test coupon optimisation, Table 1 presents the achieved mass reduction using 
different optimisation techniques. 
Table 1 Results of various optimisation techniques for cantilever structure shown in Figure 1 

Sr. 
no. Structure Mass (g) Mass reduction 

(%) Optimisation method Max. deformation 
(10–3 mm) 

1 Cantilever 35.32 0 Un-optimised 3.84 
2 Cantilever 14.82 58.2 Ad joint 9.25 
3 Cantilever 18.4 47.8 Cubic lattice 8.36 
4 Cantilever 23.7 32.8 Body diagonal lattice 5.18 
5 Cantilever 27.6 21.8 Cross diagonal 4.22 
6 Cantilever 19.8 43.9 Genetic algorithm 4.83 

Table 1 shows the results of the various optimisation techniques for cantilever structure 
shown in Figure 1. GA optimisation shows mass reduction of 43.9% with maximum 
deformation of 4.83×10–3 mm. 

Ti64 material is widely used in implant manufacturing due to good biocompatibility, 
but the costs of these implants are very high mostly due to expensive materials and 
associated printing technologies. One method to mitigate this challenge is by optimising 
the material content in the implant structure while keeping its robustness intact. 

Optimised canonical structure GA technique printed by 3D printing technology with 
material as Ti64 and tested for deformation at applied load. The testing results are in line 
with the ANSYS simulation. It can be inferred from the figure that the final configuration 
is similar in topology as obtained using ANSYS topology optimisation simulation as 
shown in Figure 10. As a result ANSYS topology optimisation simulation extended for 
Femur bone implant and observed good reduction in the material content. 
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After validating the developed GA technique on a canonical structure, femur bone 
implant geometry was rendered using lattice optimisation in ANSYS and present GA 
technique in MATLAB. The resulted topologies are depicted in Figure 18. 

Figure 18 (a, b) Bone implant geometry using lattice optimisation (c) Implant geometry using 
present GA 

 
 (a) (b) (c) 

A model of the proposed implant geometry is shown in Figure 19. The implant is 
fabricated using 3D printing method. The material for the designed implant was chosen to 
be Ti-6Al-4V. 

Figure 19 Cut section view of optimised bone implant with ports for infill material removal  
(see online version for colours) 

 

5 Conclusions 

A GA-based 2D topology optimisation code is developed to augment additive 
manufacturing technology. The initial parent pool comprised of parent structures having 
truss members with randomly selected cross-section areas. The final best fit 
configurations were compared with other optimised configurations using different 
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optimisation methods. It was observed that the optimised structures derived using 
different methods had similar topologies and observed mass reduction by keeping 
structural compliance low. Although, 2D truss like genetic topology optimisation used in 
this work is similar to lattice topology optimisation, it can be used as a generative method 
having a higher degree of configuration space. The GA is a robust optimiser and achieved 
more accurate result of optimisation as compared with other methods. Mutation, 
crossover and ranking of parent set are performed on fitness criteria which lead to better 
structure after every iteration. An attenuation of 43.9% in mass of the structural topology 
of cantilever beam is achieved using GA and 58.2% is achieved using ad-joint method. 
But in ad-joint method the structure becomes low compliance to the applied boundary 
condition and increased deformation. However, a finer mesh in the domain will aid in 
further supporting the claim that this GA-based topology optimisation method is an 
effective alternative to conventional structural optimisation techniques. 
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Annexure 

MATLAB code 

%% Genetic Algorithm Code for Topology Optimization %% 

%% Written by Suresh Gavali and Eshan Dhar (Gyrodrive Machineries (P) Ltd) %% 

%% Genetic Algorithm Code for Topology Optimization %% 

%% Function Description%% 

%% Code takes parent vectors comprising of element areas as inputs %% 

%% and returns new parents as per genetic Algorithm rules %% 

clear all 

format long 

%% Step 1: Setup Configuration Geometry 

[ENL,DOFs,DOCs,NL,EL,E] = Geometry_Setup(); 
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%% Step 2: Generate First Parent Geometries 

NoP = 4;%% Number of Parents 

NoE = size(EL,1);%% Number of Elements 

NoN = size(NL,1);%% Number of Nodes 

PD = 2;%% Problem Dimension 

a = 0.01;%% Lower Limit of Element Area 

b = 1;%% Upper Limit of Element Area 

ENL_Pool = zeros(NoN,PD*6,NoP);%% Pool of Extended Node List of all parents 

A_Pool = zeros(NoE,NoP); 

fori=1:NoP 

A_Pool(:,i) = a + (b-a).*rand(NoE,1);%% Generate First Population Randomly between 
[a,b] 

end 

 

%% Step 3: Perform FEA Analysis on All Parents 

U = zeros(NoP,1); 

fori=1:NoP 

A = A_Pool(:,i);%% Generate First Population Randomly between [a,b] 

[ENL] = FEA(ENL,EL,NL,E,A,DOFs,DOCs); 

 

%% Post Processing %% 

Node_flag = &#39;on&#39;; 

Element_flag = &#39;on&#39;; 

mag = 30;%% Scaling Factor 

subplot(2,2,i); 

post_process(NL,EL,ENL,E,Node_flag,Element_flag,mag,A); 

ENL_Pool(:,:,i) = ENL; 

u = ENL(:,10); 

Ui,1) = abs(u(3,1)*sum(A));%% Optimality Criterion 

end 

%% Step 4: Rank All Parents as per Fitness Levels based on Optimality criterion %% 

close all 
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[FF,I] = sort(U);%% Sort and Rank 

A_Pool = A_Pool(:,I);%% Sort A_Pool according to rank [ Rank 1 is best ] 

%% Now A_Pool is sorted and we will check that first %% 

U = zeros(NoP,1); 

fori=1:NoP 

A = A_Pool(:,i);%% Generate First Population Randomly between [a,b] 

[ENL] = FEA(ENL,EL,NL,E,A,DOFs,DOCs); 

ENL_Pool(:,:,i) = ENL; 

u = ENL(:,10); 

U(i,1) = u(3,1)/sum(A); 

End 

%% Post Processing %% 

Node_flag = &#39;on&#39;; 

Element_flag = &#39;on&#39;; 

mag = 300;%% Scaling Factor 

subplot(2,2,i); 

% post_process(NL,EL,ENL,E,Node_flag,Element_flag,mag,A); 

%%Checked Works Fine %%% 

close all 

M = 0;%% Counter for Mutation 

Opt_criterion = 100; 

for j = 1:1500 

 

%% Step 4: Mating and Creation of Offspring’s 

[A_Pool] = Cross_Over(A_Pool,NoE); 

NoP = size(A_Pool,2); 

U = zeros(NoP,1); 

if M==4 

[A_Pool,M] = Mutation(A_Pool,NoE); 

end 

M = M+1; 

fori=1:NoP 
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A = A_Pool(:,i);%% Generate First Population Randomly between [a,b] 

[ENL] = FEA(ENL,EL,NL,E,A,DOFs,DOCs); 

ENL_Pool(:,:,i) = ENL; 

u = ENL(:,10); 

U(i,1) = abs(u(13,1)*1e5+sum(A)); 

end 

%% Check the Fitness and Sort %% 

[FF,I] = sort(U);%% Sort and Rank 

U_min = min(U) 

A_Pool = A_Pool(:,I);%% Sort A_Pool according to rank [ Rank 1 is best ] 

A_Pool(:,(NoP-2):NoP)=[];%% Reject the Weak Son 

A = A_Pool(:,1); 

plot(j,U_min,&#39;*&#39;); 

hold on 

end 

pause(1); 

hold off 

close all 

post_process(NL,EL,ENL,E,Node_flag,Element_flag,mag,A); 


