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Abstract: This contribution assesses the predictive capacity of monthly inflow 
of two stochastic models called autoregressive integrated moving average 
(ARIMA) and TBATS and highlights the influence of climate type on their 
performances. These are the inflows to three dams in three distinct climates: 
semi-arid, subhumid and humid. The actual inflows are deduced from the water 
balance equation for 132-month period. The first ten corresponding years of 
each series are used for training of the two models and the last one is then used 
for test. Model performances are evaluated using three commonly used metrics: 
the square root of the mean square error (RMSE), the mean of the  
absolute errors (MAE), and the mean absolute error in percentage (MAPE). 
The results show that the TBATS model performs better than the ARIMA 
model and its predictive capabilities decrease depending on whether the climate 
is semi-arid, sub-humid and humid (MAPE = 50.47%, 34.79% and 29.99%, 
respectively). 
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trigonometric, box-cox transform, ARMA errors, trend and seasonal 
components; climate type; forecast; monthly dam inflows; stochastic models; 
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1 Introduction 

The importance of water as a vital resource and a major factor in the country’s 
development is globally recognised. Its quantification and management must be rigorous 
(Bouanani, 2004). In this context, it is easy to understand the need to develop models as 
management and decision support tools (Perrin et al., 2003). Hydrological predictions 
using various models are intended to allow for more informed planning, both for flood or 
dry conditions and for ordinary hydrological conditions. 

In the literature, there are several approaches to model time series, the most 
frequently used forecasting methods are those based on exponential smoothing models 
(Winters, 1976), ARIMA models (integrated moving average autoregressive) (Box et al., 
2015) and TBATS models (trigonometric exponential smoothing, Box-Cox 
transformation, ARMA residues, trend and seasonal parts) (De Livera et al., 2011). 
Among the many algorithms implemented for forecasting, exponential smoothing 
methods represent a significant role in identifying the model for annual, quarterly and 
monthly data. Still, most of these approaches are generally unable to deal with time series  
of very large sizes, recorded with high frequency, such as daily or hourly scale data  
(Gos et al., 2020). 

Stochastic models are mainly used to analyse fluctuations in stream runoff and by 
analogy are suitable for predicting liquid inflows within reservoir dams at different time 
scales (Dahkal, 2015; Abd Saleh, 2013; Gupta and Kumar, 2020). Stochastic models 
widely used for forecasting time series called ARIMA are also known as Box-Jenkins 
linear stochastic approaches (Box et al., 2015; Moeeni et al., 2017). These require long 
time series data for analysis, at least 50–100 observations are needed for a vigorous 
result. TBATS models are also used in several research fields, thus providing an 
alternative to ARIMA types through the possibility of processing chronological variables 
with complex and dynamic seasonality (Gould et al., 2008; De Livera et al., 2011; Taylor 
and Snyder, 2012; Gos et al., 2020; Herbert et al., 2021). These models govern the 
specific nonlinear phenomena that are often observed in real-time series and adapt to any 
autocorrelation in the residuals. The primary benefit of TBATS models is that the 
trigonometric component may be considered for data with a high seasonal frequency  
(De Livera et al., 2011). 
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This paper aims to assess the forecasting capacities of two time series models named 
ARIMA and TBATS, through the monthly dam inflows, and highlights the influence of 
climate type on their accuracy. For long-term forecasting (annual flows, trend for the next 
few years), climate trends must be taken into account (Fortin et al., 1997). 

The actual monthly inflows to be modelled are deduced from the water balance 
equation based on the mass conservation concept, which is adopted by the national 
agency for dams and transfers (NADT) to manage all dams in Algeria in terms of water 
resources. The three dams: Hammam Boughrara, Beni Haroun and Taksebt, objects of 
the present study, are respectively selected based on a climatic variability from semi-arid, 
subhumid to humid according to the classification of Hildebert (1950). These three 
reservoirs mobilise and regulate water for multiple purposes. 

2 Materials and methods 

2.1 Study area and brief description of dams 
2.1.1 Hammam Boughrara dam (semi-arid climate) 
The Hammam Boughrara earth dam is situated on the Tafna wadi, 13 km east of the city 
of Maghnia in western Algeria and at the confluence of the Mouillah river with the Tafna 
wadi. It was officially launched in 1999, with an initial capacity of 177 Mm3, with the 
main objective of supplying drinking water to the cities of Oran and Maghnia. The dam 
receives surface water from the Oued Mouillah watershed (2000 km2) shared between 
Algerian and Moroccan territory (Figure 1). This basin is composed in its majority by the 
plains of Angad (Oujda, Morocco) and Zrigua (Maghnia, Algeria) (Dahmani et al., 2018). 

Figure 1 Geographical location of the Hammam Boughrara dam (semi-arid case) (see online 
version for colours) 

 



   

 

   

   
 

   

   

 

   

    Influence of climate type on the predictive capabilities 259    
 

    
 
 

   

   
 

   

   

 

   

       
 

2.1.2 Beni Haroun dam (subhumid climate) 
The Beni Haroun compacted concrete dam is a major strategic hydraulic structure in 
Algeria (Figure 2). The total volume of its reservoir is 997 Mm3. The site of the dam is 
situated in the wilaya of Mila, in the east of Algeria on the Oued El Kebir. The reservoir 
generated by the dam is located to the south of the dam. It is located about 40 km 
north/northwest of the city of Constantine and 350 km east of Algiers. The total basin of 
Oued Kebir at the site of the dam has an area of 7725 km². Taking into account that part 
of the Rhumel basin is mobilised by the Hammam Grouz dam, the area related to the 
Beni Haroun dam is about 6595 km² (LEM, 2013). The dam provides drinking water to 
the cities of Mila, Constantine, Jijel, Oum-El-Bouaghi, Khenchela and Batna as well as 
the irrigation of orchards in Mila. 

Figure 2 Geographical location of the Beni Haroun dam (subhumid case) (see online version  
for colours) 

 

2.1.3 Taksebt dam (humid climate) 
The Taksebt earth dam is situated on the wadi Aissi, 10 km east of the city of Tizi-Ouzou 
in central of Algeria (Figure 3). It was officially launched in 2001 to provide drinking 
water to the cities of Tizi-Ouzou and Algiers. The dam receives an average annual inflow 
of 196 Mm3 from a catchment area of 448 km2. The Taksebt dam has greatly contributed 
to the improvement of drinking water supply at the rate of 73 Mm3 annually for the 
wilaya of Tizi-Ouzou, as well as the other irrigated basins, Algiers, Blida and Boumerdes 
(Smadi and Abrika, 2018). 
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Figure 3 Geographical location of the Taksebt dam (humid case) (see online version for colours) 

 

2.2 Data 

The used database was collected from the National Agency for Dams and Transfers 
(NADT). It consists of time series concerning the elements constituting the water balance 
within the three dams; Hammam Boughrara, Beni Haroun and Taksebt, expressed in 
millions of cubic meters (Mm3), according to the following conservation equation of 
mass or volume: 

( ) ( )ini finInflow V V EVA DWS IRR RVS VID LEA= − + + + + + +  (1) 

With: 

Inflow: volume of the overall inflows of the dam; iniV : stored volume at time (t);  

finV : stored volume at time (t+1); EVA: evaporated volume; DWS : volume allocated to 
drinking water supply; IRR: volume allocated to irrigation; RVS : released volume by 
spillway; VID: emptying volume; LEA: leakage volume. 

The monthly dam inflows at the concerned reservoirs are deduced from equation (1) 
adopted by NADT to manage all the dams in Algeria in terms of water resources. 

The period at the monthly scale, thus serving as a basis for this contribution, extends 
from 01/01/2002 to 31/12/2012, 01/01/2009 to 31/12/2019 and 01/01/2003 to 
31/12/2013, i.e., 11 years of observation for the three dams Hammam Boughrara, Beni 
Haroun and Taksebt, respectively. The sizes of the three series are identical (132 
months), which eliminates the direct influence of the length of the sample in favour of an 
expected and probable climate influence. The numerical values of the monthly inputs 
within the three dams vary from 0.446 Mm3 to 44.569 Mm3, 7.614 Mm3 to 686.034 Mm3 
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and 0.297 Mm3 to 102.028 Mm3 for Hammam Boughrara, Beni Haroun and Taksebt, 
respectively. For the models considered in this work, the training phase is spread over the 
first ten years and the test phase concerns the last year for each dam studied separately. 

2.3 ARIMA models 

One of the well-known ways of time series modelling is the ARIMA modelling 
introduced by Box and Jenkins to forecast time series (Box et al., 2015). 

The ARIMA or Box-Jenkins models are relatively easy to implement (Hyndman and 
Khandakar, 2008). A seasonal ARIMA model is denoted ARIMA (autoregressive 
integrated moving average, (p, d, q) (P, D, Q)s, the data depend on the previous values 
(not seasonal part) and also on the values for the same period of previous years (seasonal 
part) where s is the seasonal period which is equal to 12 for the monthly case. 

An ARIMA (p, d, q) (non-seasonal part) model can take into account time 
dependence in several ways. First, the time series is differentiated to make it stationary. If 
d = 0, the observations are modelled directly, and if d = 1, the differences between 
consecutive observations are modelled. Second, the time dependence of the stationary 
process yt is modelled by including p autoregressive models. Third, q are terms of the 
moving average models. The process supports the observation of previous errors. Finally, 
by combining these three models, we obtain the ARIMA model. Thus, the general form 
of ARIMA models is given by: 

1 1

p q

t i t i j t j
i j

y c yφ θ ε− −
= =

= + +∑ ∑  (2) 

where yt and yt-i are stationary stochastic processes at time t and t-i, c is the constant 
which determines the level of the time series, εt is the error or white noise term, φi mean 
the autoregressive coefficients and θj are the moving average coefficients. 

For a seasonal part, these steps can be repeated according to the cycle period, 
regardless of the time interval. The process is the same for the seasonal part as for D ≠ 0. 

2.4 TBATS models 

The main disadvantage of the ARIMA approach is that seasonality is forced to be 
periodic, while a TBATS model allows multiple, complex and dynamic seasonality in 
time series (Gould et al., 2008). TBATS is an alternative developed by (De Livera et al., 
2011). This model uses a mixture of the terms of Fourier and an exponential smoothing 
fit with a fully automated Box-Cox transformation (Hyndman, 2017). The TBATS model 
can be stated as follows: 

For a time-series yt of N observed data, we define a Box-Cox transformation with the 
parameter ω as follows: 
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Then we have: 

1 1
1

 
i

V
i

t t t t m i
i

y l b S dω φ− − −
=

= + + +∑  (4) 

where 1 1t t t tl l b dφ α− −= + +  is the local level in the period t, ( ) 11t t tb b b dφ φ β−= − + +  is 
the short term trend of period t with b is the long term 
trend,

1 1
 p q

t i t i i t i ti i
d dφ θ ε ε− −= =

= + +∑ ∑  refers to a model ARMA(p, q) with the 
parameters φi (for i = 1, …, p), θi (for i = 1, …, q) and εt is a white noise. The ith seasonal 
element at time t is defined as: 

i

i i
t t m i tS S dγ−= + . The smoothing coefficients are given by 

α, β, γi, for i = 1, …, u, to determine the extent of the effect of irregular components on 
the states i

tb ,   i i
t tl et S , respectively. The main difference between TBATS and other 

seasonal formulations is the use of ARMA and the transformation of Box-Cox, which 
allows additional information to be captured in the data. Gos et al., (2020) say that  
De Livera et al. (2011) are amended the approach of West and Harrison (2006) and 
introduce the TBATS model, written as TBATS (ω, φ, p, q, (m1, k1), (m2, k2), …, (mu, 
ku)), (Gos et al., 2020). The term ki is the number of harmonics for the seasonal 
component i

tS . The TBATS model achieves typical non-linear features that are often 
observed in real-time series and adapts to any autocorrelation in the tailings. The TBATS 
model is also built on the Fourier transformation. In this model, the ith seasonal element 

i
tS  is defined by following a system of equations which is written: 

,
1

'
, , 1 , 1 1  
' '
, , 1 , 1 2

  ,                                       

,    

ik
i i
t j t

j
i i i i i i
j t j t j j t j t

i i i i i i
j t j t j j t j t

S S

S S cos S sin µ d
S S sin S cos µ d

η η
η η

=

− −

− −

⎛ ⎞
=⎜ ⎟

⎜ ⎟
⎜ ⎟= + +
⎜ ⎟

= − + +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
 (5) 

where 1
iµ  and 2

iµ  are the smoothing coefficients and 2 ji
j mi

πη =  describes the stochastic 

level of the ith seasonal element as being ,
i
j tS  and '

,
i
j tS  for stochastic growth of the ith 

seasonal element and describes seasonal changes over time. The number of ki harmonics 
required for the ith seasonal component is defined as follows: 1

2 2 ,m m
ik or −=  if m is even 

or odd, respectively. 

2.5 ARIMA/TBATS candidate model choice criteria 

The best ARIMA/TBATS forecasting models are those that meet the most recognised 
quality criterion known as the Akaike Information Criterion (AIC), (Akaike, 1974). This 
last criterion leads to the choice of the model with the smallest mean square error by 
applying a penalty which depends on the quantity of unknown parameters that must be 
estimated. Therefore, this criterion favours parsimonious models and is calculated by the 
following relationship: 

( )2 2log  AIC k L= −  (6) 
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where k is the number of coefficients estimated in the model and L denotes the maximum 
value of the likelihood function for the model. 

2.6 Performance criteria 

Various statistical measures have been developed and used in the literature. To assess the 
fit and predictive accuracy of the models in this contribution, the datasets were 
mathematically evaluated by calculating and restricting to the following three 
performance criteria: The square root of the mean squared error (RMSE), the mean 
absolute errors (MAE) and mean absolute percentage error (MAPE) expressed by the 
following equations: 

2

1

1 ( )  
N

i i
i

RMSE M P
N =

= −∑  (7) 

 
1

1    
N

i i
i

MAE M P
N =

= −∑  (8) 

   

1

( )1 100
N

i i

i i

M P
MAPE

N M=

−
= ×∑  (9) 

where N is the amount of data points (size of the time series), Mi are the measured values 
and Pi are the corresponding predicted values. 

One of the most frequently used metrics to evaluate the accuracy of the model's 
predictions is MAPE, which is the MAE in percent. This performance indicator is easy to 
interpret. For example, a x% value of MAPE means that the average variance among the 
predicted and the measured values is x%. The MAPE metric will be adopted for the final 
selection of the best model in this study. 

3 Results and discussions 

3.1 Results related to the semi-arid case 
In order to be able to test an ARIMA model on the monthly inflows of the Hammam 
Boughrara dam (semi-arid case), the sample has been subdivided into a training phase 
(from 01/01/2002 to 31/12/2011) and a test phase (from 01/01/2012 to 31/12/2012), as 
previously mentioned. 

The auto.arima function (R Core Team, 2021) confronts several models and returns 
the one that minimises the Akaike Information Criterion, AIC (Akaike, 1974): more 
precision with fewer parameters (principle of parsimony). The application of the 
ARIMA-type candidate models led to the final result from the optimal model for this 
purpose, denoted by ARIMA(2,1,0)(3,1,0)[12]. 

As for the TBATS model, the tbats function (R Core Team, 2021) also compares 
several different TBATS-type models and in turn arrives at the final result from the 
corresponding optimal model denoted by TBATS(0, {0,0}, 0.876, {<12,2>}). 

The results of the two ARIMA/TBATS models are shown graphically in Figures 4 
and 5, which indicate that the extreme inflows are beyond the scope of the modelling. 
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Figure 4 Comparison of predicted and measured monthly inflows at the Hammam Boughrara 
reservoir dam (semi-arid case): (a) ARIMA model and (b) TBATS model (see online 
version for colours) 
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The graphs in Figure 5 show that both the ARIMA and TBATS models give forecasts 
that appear to account for all available information. There is no important auto-
correlation in the residual series for the ARIMA model as there appears to be more AR 
structure for the TBATS model. The histograms look non-normal. Figure 5 also indicates 
that the residuals from the TBATS(0, {0,0}, 0.876, {<12,2>}) model have a more normal 
shape than their counterparts from the ARIMA(2,1,0)(3,1,0) [12] model. 
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Figure 5 Analysis of residuals from ARIMA and TBATS models: Hammam Boughrara dam 
(semi-arid case) (see online version for colours) 

 

The results summarised in Table 1 indicate that the TBATS(0, {0,0}, 0. 876, {<12,2>}) 
model for forecasting monthly inflows to the dam of Hammam Boughrara is little 
different from the ARIMA(2,1,0)(3,1,0)[12] model in terms of RMSE values, however it 
is clearly more efficient than the ARIMA(2,1,0)(3,1,0)[12] model by considering MAE 
and MAPE values. Nevertheless, the predictive capacity remains modest 
(MAPE = 39.956%) and the use of more adequate models is strongly recommended for 
this case study which concerned a region with a semi-arid climate in western Algeria. 

Table 1 Results of the application of ARIMA and TBATS models for the monthly inflows at 
the Hammam Boughrara dam (semi-arid case) 

Models ARIMA(2,1,0)(3,1,0)[12] TBATS(0, {0,0}, 0.876, {<12,2>}) 
ARIMA(p,d,q)(P,D,Q)S 
TBATS 

01/01/2002 to 
31/12/2011 

01/01/2012 to 
31/12/2012 

01/01/2002 to 
31/12/2011 

01/01/2012 to 
31/12/2012 

Performance criteria Training Test Training Test 
RMSE (Mm3) 5.520 12.087 5.150 12.056 
MAE (Mm3) 3.281 6.212 2.312 4.303 
MAPE (%) 118.299 103.465 58.838 39.956 

3.2 Results related to the Subhumid case 

The test of an ARIMA model to the series of the monthly inflows of the Beni Haroun 
dam (subhumid case), also required that its series be subdivided into a training phase 
(from 01/01/2009 to 31/12/2018) and a test phase (from 01/01/2019 to 31/12/2019). The 
auto.arima function (R Core Team, 2021) compares several different models and gives 
the one that minimises the AIC. The application of the competing models leads to the 
final result which is an optimal model designated by ARIMA(0,1,3)(1,1,0)[12]. Similarly, 
the function tbats (R Core Team, 2021) confronts distinct TBATS models and turns at the 
end a model denoted by TBATS(0, {0,1}, –, {<12,2>}). 
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The results of the temporal growth of the measured and predicted inflows are 
illustrated graphically in Figure 6 and the examination of the residuals of the selected 
models are summarised in Figure 7. Figure 6 shows that both the ARIMA and TBATS 
models reproduce the extreme values of monthly inflows with an acceptable way. The 
histograms do not appear to be normal. 

Figure 6 Comparison of predicted and measured monthly inflows at the Beni Haroun reservoir 
dam (subhumid case): (a) ARIMA model and (b) TBATS model (see online version  
for colours) 
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Figure 7 Analysis of residuals from ARIMA and TBATS models: Beni Haroun dam (subhumid 
case) (see online version for colours) 

 

The results summarised in Table 2 show that the TBATS(0, {0,1}, –, {<12,2>}) model 
for predicting monthly inflows to the Beni Haroun dam is significantly better than the 
ARIMA(0,1,3)(1,1,0)[12] model in terms of MAE, RMSE and MAPE values. According 
to the MAPE value, the predictive capacity of the TBATS(0, {0,1}, –, {<12,2>}) model 
is still modest (MAPE = 34.786 %) and the seek for other more consistent means of 
modelling is necessary for this case study which concerned a region characterised by a 
subhumid climate in the east of Algeria. 

Table 2 Results of the application of ARIMA and TBATS models for the monthly inflows at 
the Beni Haroun dam (subhumid case) 

Models ARIMA(2,1,0)(3,1,0)[12] TBATS(0, {0,1}, –, {<12,2>}) 
ARIMA(p,d,q)(P,D,Q)S 
TBATS 

01/01/2002 to 
31/12/2011 

01/01/2012 to 
31/12/2012 

01/01/2002 to 
31/12/2011 

01/01/2012 to 
31/12/2012 

Performance criteria Training Test Training Test 
RMSE (Mm3) 84.946 137.145 78.883 93.617 
MAE (Mm3) 45.263 90.383 39.788 61.236 
MAPE (%) 94.593 53.204 47.155 34.786 

3.3 Results related to the humid case 

Finally, the evaluation of the ARIMA model to the series of monthly inflows of the 
Taksebt dam (humid case), involves the subdivision of the series into a training phase 
(from 01/01/2003 to 31/12/2012) and a test phase (from 01/01/2013 to 31/12/2013). The 
auto.arima function (R Core Team, 2021) examines several models and highlights the one 
that minimises the AIC. The application of the various ARIMA models led to the final 
result denoted by ARIMA(2,0,1)(0,0,1)[12]. The function tbats (R Core Team, 2021) 
evaluates several typical TBATS models and in turn converges to the optimal result 
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TBATS(0.032, {0,1}, –, {<12,2>}). The comparison of the measured and the predicted 
values are given graphically by Figure 8. 

Figure 8 Comparison of predicted and measured monthly inflows at the Taksebt reservoir dam 
(humid case): (a) ARIMA model and (b) TBATS model (see online version for colours) 

 

 

The two graphs in Figure 8 show that the two models ARIMA and TBATS just reproduce 
the monthly inflow peaks in the Taksebt dam, although the temporal evolution (rise/fall) 
is almost perfect. 

The examination of the residuals is summarised in Figure 9 where it is easy to see the 
almost total absence of significant auto-correlations in the residual series, particularly for 
the TBATS model. The monthly inflow forecasts for this case study seem very acceptable 
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for the TBATS model, while the ARIMA model should be rejected, especially in terms of 
MAPE, which exceeds 300%. 

Figure 9 Analysis of residuals from ARIMA and TBATS models: Taksebt dam (humid case) 
(see online version for colours) 

 

The results summarised in Table 3 indicate that the TBATS(0.032, {0,1}, –, {<12,2>}) 
model for forecasting monthly inflows to the Taksebt dam is very different from the 
ARIMA(2,0,1)(0,0,1)[12] model in terms of the values of MAE, RMSE and MAPE. The 
predictive ability is acceptable (MAPE = 29.99%) and the use of more appropriate 
models is still useful even for this case, which concerned a humid climate in central 
Algeria. 

Table 3 Results of the application of ARIMA and TBATS models for the monthly inflows at 
the Taksebt dam (humid case) 

Models ARIMA(2,0,1)(0,0,1)[12] TBATS(0.032, {0,1}, –, {<12,2>}) 
ARIMA(p,d,q)(P,D,Q)S 
TBATS 

01/01/2003 to 
31/12/2012 

01/01/2013 to 
31/12/2013 

01/01/2003 to 
31/12/2012 

01/01/2013 to 
31/12/2013 

Performance criteria Training Test Training Test 
RMSE (Mm3) 13.882 15.638 13.961 9.324 
MAE (Mm3) 9.995 12.963 7.494 5.514 
MAPE (%) 201.117 310.551 60.836 29.990 

4 Conclusion 

In this study, the search for a relatively efficient means of forecasting monthly inflows 
was completed within three reservoir dams located in distinct climatic regions: Hammam 
Boughrara dam (semi-arid in western Algeria), Beni Haroun dam (subhumid in eastern 
Algeria), and Taksebt dam (humid in central Algeria). The models evaluated are among 
the linear stochastic types well explored in the literature. They are the ARIMA and 
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TBATS models. The 132-month (11-year) time series are analysed with a single split that 
exploits the first 120 months (10 years) in the model training phase and the 12 months of 
the last year will consequently be used for the test of the best ARIMA/TBATS models. 

The results of the evaluation of the two models considered show that the ARIMA and 
TBATS types do not accurately reproduce the variability of monthly inflows during peak 
periods for the three dams involved in this investigation. The residuals from the adopted 
models are far from white noise and the auto-correlations in so-called residuals are not 
completely captured. At the limit the TBATS models may be presented as a remedy to 
the models which do not take into account the complexity and the dynamicity of the 
seasonality of the temporal series of the monthly inflows in dams of Algeria in three 
different climatic regions (semi-arid, subhumid and humid), however, this remedy 
remains limited in terms of predictive capacity and in the reproduction of the strong 
extreme values proven by the MAPE metric which decreases of 40%, with 35%, and with 
30% according to whether (semi-arid, subhumid or humid). The best MAPE value has not 
dropped below 30% which may be still considered as a strong error reflecting the need to 
use more appropriate models to forecast the monthly inflows in dams of Algeria. The 
ARIMA models, and in particular TBATS, can ultimately be considered as forecasting 
tools in preliminary water resource management planning on a monthly scale. 

References 
Abd Saleh, Z. (2013) ‘Forecasting by box-jenkins (ARIMA) models to inflow of haditha dam’, 

Journal of Babylon University, Engineering Sciences, Vol. 21, No. 5, pp.1675–1685. 
Akaike, H. (1974) ‘A new look at the statistical model identification’, IEEE Transactions on 

Automatic Control, Vol. 19, No. 6, pp.716–723, http://dx.doi.org/10.1109/TAC.1974.1100705 
Bouanani, A. (2004) Hydrologie, transport solide et modélisation : étude de quelques sous bassins 

de la Tafna (NW – Algérie). Doctorat d’ état, Université Abou Bekr Belkaid Tlemcen, Algérie. 
250 pages. 

Box, G.E., Jenkins, G.M., Reinsel, G.C. and Ljung, G.M. (2015) Time Series Analysis: Forecasting 
and Control, John Wiley & Sons, Hoboken, New Jerzey, USA. 

Dahkal, I. (2015) Adjustment of Time Series Models to Predict the Inflow of Hammam Dam. Master 
Thesis (in French). University of Chlef, Algeria. 

Dahmani, S., Ferhait, A., Yebdri, D., Bounoua, R. and Khodja, H.D. (2018) ‘Development of 
reservoir management optimal rules: case of Hammam Boughrara dam, Wilaya of Tlemcen, 
Algeria’, Advances in Hydroinformatics, Springer, Singapore, pp.347–358, https://doi.org/ 
10.1007/978-981-10-7218-5_23 

De Livera, A.M., Hyndman, R.J. and Snyder, R.D. (2011) ‘Forecasting time series with complex 
seasonal patterns using exponential smoothing’, Journal of the American Statistical 
Association, Vol. 106, No. 496, pp.1513–1527, https://doi.org/10.1198/jasa.2011.tm09771 

Fortin, V., Ouarda, T.B.M.J., Rasmussen, P. and Bobée, B. (1997) ‘Revue bibliographique des 
méthodes de prévision des débits’, Revue des sciences de l'eau/Journal of Water Science,  
Vol. 10, No. 4, pp.461–487, https://doi.org/10.7202/705289ar 

Gos, M., Krzyszczak, J., Baranowski, P., Murat, M. and Malinowska, I. (2020) ‘Combined TBATS 
and SVM model of minimum and maximum air temperatures applied to wheat yield prediction 
at different locations in Europe’, Agricultural and Forest Meteorology, Vol. 281, p.107827, 
https://doi.org/10.1016/j.agrformet.2019.107827 

Gould, P.G., Koehler, A.B., Ord, J.K., Snyder, R.D., Hyndman, R.J. and Vahid-Araghi, F. (2008) 
‘Forecasting time series with multiple seasonal patterns’, European Journal of Operational 
Research, Vol. 191, No. 1, pp.207–222, https://doi.org/10.1016/j.ejor.2007.08.024 



   

 

   

   
 

   

   

 

   

    Influence of climate type on the predictive capabilities 271    
 

    
 
 

   

   
 

   

   

 

   

       
 

Gupta, A. and Kumar, A. (2020) Two-Step Daily Reservoir Inflow Prediction Using ARIMA-
Machine Learning and Ensemble Models, doi. 10.1002/essoar.10502185.1. 

Herbert, Z.C., Asghar, Z. and Oroza, C.A. (2021) ‘Long-term reservoir inflow forecasts: enhanced 
water supply and inflow volume accuracy using deep learning’, Journal of Hydrology,  
Vol. 601, p.126676, https://doi.org/10.1016/j.jhydrol.2021.126676 

Hildebert, I. (1950) ‘Seasonal rainfall distribution in Algeria (in French)’, Annales de Géographie, 
Vol. 59, No. 317, pp.354–361, https://doi.org/10.3406/geo.1950.13115 

Hyndman, R. (2017) Forecasting Functions for Time Series and Linear Models, R package version 
8.2, http://pkg.robjhyndman.com/forecast 

Hyndman, R.J. and Khandakar, Y. (2008) ‘Automatic time series forecasting: the forecast package 
for R’, Journal of Statistical Software, Vol. 27, No. 1, pp.1–22, https://www.jstatsoft.org/ 
article/view/v027i03 

LEM (2013) Bathymetric Surveys of Eleven Dams in Operation: Measurement Campaign Beni 
Haroun, Report December 2013. Djenane El Malik Hydra – Alger. 

Moeeni, H., Bonakdari, H. and Fatemi, S.E. (2017) ‘Stochastic model stationarization by 
eliminating the periodic term and its effect on time series prediction’, Journal of Hydrology, 
Vol. 547, pp.348–364, https://doi.org/10.1016/j.jhydrol.2017.02.012 

Perrin, C., Michel, C. and Andréassian, V. (2003) ‘Improvement of a parsimonious model for 
streamflow simulation’, Journal of Hydrology, Vol. 279, Nos. 1-4, pp.275–289, 
https://doi.org/10.1016/S0022-1694(03)00225-7 

R and Core team (2021) R: A Language and Environment for Statistical Computing, R Foundation 
for Statistical Computing, Vienna, Austria, https://www.R-project.org/ 

Smadi, A. and Abrika, B. (2018) Territorial Resilience as a Factor in the Emergence of a 
Sustainable Tourist Destination. Case of the Taksebt dam (Tizi-Ouzou, Algeria). Études 
Caribéennes. (In French), https://doi.org/10.4000/etudescaribeennes.14590 

Taylor, J.W. and Snyder, R.D. (2012) ‘Forecasting intraday time series with multiple seasonal 
cycles using parsimonious seasonal exponential smoothing’, Omega, Vol. 40, No. 6,  
pp.748–757, https://doi.org/10.1016/j.omega.2010.03.004 

West, M. and Harrison, J. (2006) Bayesian Forecasting and Dynamic Models. Springer Science & 
Business Media. 

Winters, P.R. (1976) Forecasting Sales by Exponentially Weighted Moving Averages, 
Mathematical Models in Marketing, Lecture Notes in Economics and Mathematical systems. 
Springer, Berlin, Heidelberg, pp.384–386, https://doi.org/10.1007/978-3-642-51565-1_116 

 


